Conveners
DC. Atomic and Molecular Physics
- Leo Piilonen (Virginia Tech)
John Yukich
(Davidson College)
10/20/11, 1:30 PM
Contributed
Numerous experiments have investigated the properties and dynamics of single-atom negative ions. Similar experiments can be conducted with molecular negative ions. Laser photodetachment spectroscopy of such ions is more complicated due to rotational and vibrational structure, and often yields spectroscopic benchmarks such as rotational constants. We have conducted low-resolution...
Alexander Woods
(University of Tennessee Space Institute)
10/20/11, 1:42 PM
Contributed
Molecular recombination and excitation of atoms following laser-induced optical breakdown provide means for simultaneous detection of atomic and molecular species. Atomic emission spectra may be analyzed to infer electron number and temperature. Careful analysis of select atomic spectra may reveal superposed diatomic molecular spectra. Nonlinear fitting of synthetic molecular spectra,...
Brian Canfield
(University of Tennessee Space Institute)
10/20/11, 1:54 PM
Contributed
We are developing an ultrasensitive, fluorescence-based detection system in highly parallel microchannels. Multichannel microfluidic devices have been fabricated by direct femtosecond laser machining of fused silica substrates. We approach single-molecule detection sensitivity by introducing dilute aqueous solutions (~ pM) of fluorescently labeled molecules into the microchannels. In a...
Paul Helminger
(University of South Alabama)
10/20/11, 2:06 PM
Contributed
Our studies of the terahertz rotational spectrum of nitric acid now include the ground state and the four lowest excited states. We report good progress in the assignment and analysis of the next higher energy states, the v5/2v9 interacting states. This very complex spectrum includes torsional splitting of both states and Fermi and Coriolis type interactions between them. The current analysis...
Jason King
(University of Tennessee Space Institute)
10/20/11, 2:18 PM
Contributed
The ability to manipulate and trap single molecules in solution through the application of actively controlled electric fields is a valuable tool for a number of bio-molecular studies of proteins and nucleic acids. Here we report the development of a microfluidic device consisting of four electrodes sputtered onto two glass coverslips and fixed in a tetrahedral arrangement. This geometrical...
Justin Yonker
(Virginia Tech)
10/20/11, 2:30 PM
Contributed
In spite of its status as a minor species, NO plays key roles in many upper atmospheric processes. As the only heteronuclear molecule, its fundamental, Delta v=1 emission cools the thermosphere (z>100 km). Its low ionization potential ensures that NO^+ is the end product of the ion-neutral chemistry in the ionospheric E-region. And in the presence of excess atomic oxygen, NO will catalytically...
Curt Moyer
(University of North Carolina at Wilmington)
10/20/11, 2:42 PM
Contributed
We have developed a formalism that describes both quasibound and resonant states within the same theoretical framework, and that admits a clean and unambiguous distinction between these states and the states of the embedding continuum. The approach described here builds on our earlier work by clarifying several crucial points and extending the theory to encompass a variety of continuous...
James Germann
(University of Tennessee Space Institute)
10/20/11, 2:54 PM
Contributed
The measurement of a one-dimensional flow using a confocal fluorescence microscope with two excitation volumes has been well documented. This technique can be extended to measure flow in all three dimensions simultaneously through a four-focus, two-photon microscope. To this end, an apparatus has been constructed in which the beam from a modelocked Ti-Sapphire laser is passed through a double...
Lloyd Davis
(University of Tennessee Space Institute)
10/20/11, 3:06 PM
Contributed
We have recently reported the use of tight line-focusing of an amplified femtosecond laser beam to fabricate very long, sub-micron wide features in glass with just a single laser pulse [Davis et al., IQEC/CLEO Pacific Rim, August 2011]. The optical configuration used in these experiments presents distinct advantages and can be expected to have numerous applications, including the rapid...
Cassandra Major
(North Georgia College and State University)
10/20/11, 3:18 PM
Contributed (undergraduate)
X-ray Fluorescence (XRF) spectroscopy is a rapid, noninvasive technique for both detecting and identifying chemical elements within a given sample. At North Georgia College and State University, a sealed tube x-ray source and slightly focusing polycapillary optic are used in nondestructive XRF analysis of oil paint pigments. Oil paints contain both organic and inorganic matter, and the...