Conveners
PC. Condensed Matter Physics / Nanophysics II
- Wilfredo Otano (University of Puerto Rico – Cayey)
Kalyan Kanakamedala
(Louisiana State University)
10/22/11, 10:45 AM
Contributed
Tantamount to the realization of next generation nanoscale devices is the synthesis and characterization of new electronic materials. GUMBOS, or a Group of Uniform Materials Based on Organic Salts, represent a first-time synthesis of nanoscale material composed of ionic liquid species in the frozen (solid) state whose electronic characteristics are indicative of potential future application to...
Naveen Jagadish
(Louisiana State University)
10/22/11, 10:57 AM
Contributed
In our work on hybrid (organic-inorganic) electronic materials (HEMs), we have developed a reasonably facile method for characterizing GUMBOS or a Group of Uniform Materials Based on Organic Salts. In addition to the versatility of traditional ionic liquids (i.e.-solubility, melting point, viscosity), nanoGUMBOS are functionalizable to exhibit properties such as fluorescence, magnetic...
195.
Negative coefficient of thermal expansion in (epoxy resin)/(zirconium tungstate) nanocomposites
Erich See
(Virginia Tech)
10/22/11, 11:09 AM
Contributed
The alpha-phase of zirconium tungstate (Zr W_2 O_8) has the remarkable property that its coefficient of thermal expansion (CTE) takes on a nearly constant negative value throughout its entire range of thermal stability (0 -- 1050 K). Composites of Zr W_2 O_8 nanoparticles and polymer resins have a reduced CTE compared to the pure polymer, but previous work has been restricted to measurements...
Roman Ciapurin
(University of Florida)
10/22/11, 11:21 AM
Contributed (undergraduate)
The decay of quantum turbulence is not fully understood in superfluid helium at milikelvin temperatures where the viscous normal component is absent. Vibrating grid experiments performed periously produced inhomogeneous turbulence, making the results hard to interpret. We have developed experimental methods to produce homogeneous isotropic turbulence by pulling a grid at a variable constant...
Anita Vincent-Johnson
(James Madison University)
10/22/11, 11:33 AM
Contributed (undergraduate)
Our research focuses on polaritons, or infrared (IR) photon-phonon coupling in ionic materials, as a way to capture IR radiation from the solar spectrum. Radiative polaritons (RP) have the unique property that their phase velocity is faster than the speed of light. We wish to prove that the polaritons present in thin oxide films are RP's with the traits predicted by theory. Therefore, in this...
Phillip Broussard
(Covenant College)
10/22/11, 11:45 AM
Contributed
We have carried out measurements of inductive critical currents in Nb/Mo bilayers. The films were grown by magnetron sputtering onto silicon substrates from separate sources. Sequences with varying either the molybdenum or niobium layer thickness were grown and studied. Inductive critical currents were measured using a third harmonic technique at 1 kHz. J_c varies as (1-t)^{3/2} as expected...
Ustun Sunay
(University of Alabama at Birmingham)
10/22/11, 11:57 AM
Contributed (undergraduate)
Unintentional doping by hydrogen is a concern for industrial growth of p-type GaN which is important in creating blue LEDs and high frequency devices. Using electron paramagnetic resonance (EPR) we investigated hydrogen passivation in p-type nitrides. Samples included conventional GaN and Al_x Ga_{1-x} N(x=0.12,0.28) grown by chemical vapor deposition (CVD) with 1-4x10^{19} cm${-3} Mg and GaN...
Kyungwha Park
(Virginia Tech)
10/22/11, 12:09 PM
Contributed
Recently, three-dimensional topological insulators (TIs) with time reversal symmetry draw attention due to their unique quantum properties and device applications. Strong spin-orbit coupling in TIs induces metallic surface states within bulk band gaps. It has been known that Bi_2 Te_3, Bi_2 Se_3, and Sb_2 Te_3 are TIs possessing a single Dirac cone in the dispersion of the surface states at a...
Eric Martin
(University of Tennessee)
10/22/11, 12:21 PM
Contributed (undergraduate)
Magnesium-doped rhodium oxides with formula unit Cu Rh_{1-x} Mg_x O_2 and delafossite-type structure exhibit a high thermoelectric figure of merit at elevated temperatures. The electronic structure of Cu Rh_{1-x} Mg_x O_2 has been studied with x-ray emission spectroscopy (XES), x-ray absorption spectroscopy (XAS), and photoemission spectroscopy (PES). The data reveal that the states at the...
Kristen Dagenais
(University of Maryland, Baltimore County)
10/22/11, 12:33 PM
Contributed (undergraduate)
A relationship between energy band gap and electronegativity has long been understood to exist. However, defining the relationship between the two for binary oxide systems has proven difficult. Many scientists tried to model the band gap as a function of Pauling electronegativity values, but we show that by using a new concept called ``optical electronegativity'' one can obtain much better...
Paolo Vilmercati
(University of Tennessee at Knoxville)
10/22/11, 12:45 PM
Contributed
The newly discovered BaFe2As2 high Tc superconductors have given a huge stimulus in the field of superconductivity after more than two decades of cuprates supremacy. Their relatively simpler crystal structure, the possibility of ambivalent doping (holes and electrons) and their rich phase diagram provide an ideal workbench for a deeper understanding of high Tc superconductivity. Here we...
Sajjad Tollabimazraehno
(Johannes Kepler University)
10/22/11, 12:57 PM
Contributed
The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 um thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional...
Sushovit Adhikari
(Southeastern Louisiana University)
10/22/11, 1:09 PM
Contributed
A Michelson interferometer has been assembled to evaluate the adhesion strength of thin-film coating on silicon wafers. Two gold coated silicon wafer specimens are configured as the two end mirrors of the interferometer. The end mirrors are slightly tilted so that vertical interferometric fringes (dark stripes) are formed behind the beam splitter. An acoustic transducer is attached to the...