Conveners
JA. Astrophysics
- Michael Kavic (Long Island University)
155.
LENS -- A Novel Technology to Measure the Low Energy Solar Neutrino Spectrum (pp, 7Be, and CNO)
Derek Rountree
(Virginia Tech)
10/21/11, 1:30 PM
Contributed
LENS is a low energy solar neutrino spectrometer that will measure the solar neutrino spectrum above 115 keV, >95% of the solar neutrino flux, in real time. The fundamental neutrino reaction in LENS is charged-current based capture on 115In detected in a liquid scintillator medium. The reaction yields the prompt emission of an electron and the delayed emission of 2 gamma rays that serve as a...
Tristan Wright
(Virginia Tech)
10/21/11, 1:42 PM
Contributed
The LENS collaboration's goal is the construction of a low energy neutrino spectrometer (LENS) that will measure the entire solar neutrino spectrum above 115keV. In an effort to reach this goal we have developed a two phase prototype program. The first of these is microLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice---a novel detector method...
Szymon Manecki
(Virginia Tech)
10/21/11, 1:54 PM
Contributed
Borexino, a real-time calorimetric detector for low energy neutrino spectroscopy, is located in the underground laboratories of Gran Sasso, Italy (LNGS). The experiment's main focus is the direct measurement of the 7Be solar neutrino flux of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. After years of construction, the first data was collected in May 2007,...
Jacob Moldenhauer
(Francis Marion University)
10/21/11, 2:06 PM
Contributed
Recently, some f(G) higher order gravity models have been shown to exhibit some interesting phenomenology including a late time cosmic acceleration following a matter-dominated deceleration period with no separatrix singularities in between the two phases. In this work, we compare the models to the solar system limits from the gravitational frequency redshift, the deflection of light, the...
Nathan DiDomenico
(James Madison University)
10/21/11, 2:18 PM
Contributed (undergraduate)
Megamaser disk systems allow for accurate measurements of the masses of galactic supermassive black holes and precise distance determinations of extragalactic systems, but the detection rate of maser systems remains low. We investigate the optical spectral properties of a large, statistically significant sample of galaxies that host water masers in order to identify the host properties that...
Antonio Colella
(IBM)
10/21/11, 2:30 PM
Contributed
The TOE unites all known physical phenomena from the Planck cube to the Super Universe. Each matter and force particle exists within a Planck cube and any universe object is representable by a volume of contiguous Planck cubes. The TOE unifies 16 SM, 16 Supersymmetric, 32 anti, 64 Higgs, and the super force for 129 particles. At t = 0, our universe's energy/mass consisted of super force. By t...