Conveners
JC. Nuclear Physics II
- Paul Cottle (Florida State University)
Brayton Doll
(NBPHS, Vanderbilt University)
10/21/11, 1:30 PM
Contributed
We've measured prompt gamma rays from the fission fragments of the spontaneous fission of 252Cf in Gammasphere. The data from the experiment have high statistics with 5.7 * 10^{11} triple and higher gamma coincidences. We examined levels in 162Gd in this data set which shows very consistent I(I+1) level spacing in the yrast band. This demonstrates consistency with a rotational nucleus that has...
N. T. Brewer
(Vanderbilt University)
10/21/11, 1:42 PM
Contributed
Gamma-rays from the Spontaneous Fission of 252Cf were measured with Gammasphere and have given great insight into the structure of neutron rich nuclei. We have examined high-spin states and the gamma-transitions associated with octupole correlations in {143-146{Ba and 148Ce. Coexisting quadrupole/octupole deformation is characterized by two Delta I = 1 rotational bands with opposite parities....
W. Clarke Smith
(George Washington University)
10/21/11, 1:54 PM
Contributed (undergraduate)
Azimuthal asymmetries in neutron yields produced by bombarding targets with linearly polarized photons via (gamma,n), (gamma,2n), and (gamma,f) reactions are being investigated as a possible means of identifying various nuclear isotopes. The High Intensity gamma-ray Source (HIgS) at Duke University provides nearly monochromatic, circularly or linearly polarized gamma rays with high intensity...
John Wilson
(Western Kentucky University)
10/21/11, 2:06 PM
Contributed (undergraduate)
To extract the nuclear size information, the experimentally measured interaction cross-section is compared to cross-sections calculated in the framework of Glauber theory or in its various approximations. These calculations are usually performed using a Monte Carlo technique. In the presented paper, we discuss the sensitivity of the reaction and interaction cross sections' calculation to the...
Wei-Chia Chen
(Florida State University)
10/21/11, 2:18 PM
Contributed
We will discuss attempts to build a relativistic density functional using constraints from both finite nuclei and neutron stars. The calibration of the model will proceed through a standard minimization of a quality chi-square measure. Moreover, by studying the model-parameter landscape around the minimum we will be able to provide meaningful theoretical error bars as well as to uncover...
David Ernst
(Vanderbilt University and Fisk University)
10/21/11, 2:30 PM
Contributed
Assuming three neutrinos, the neutrino oscillation mixing parameters are extracted from a global analysis of the Super-K atmospheric, MINOS disappearance and appearance neutrino, CHOOZ, T2K, KamLAND, and all solar data. MINOS anti-neutrino data is not included. The full oscillation probabilities are used so that we can address the question of the sign of theta_13. How to extract the allowed...
Nathan DeLauder
(University of Tennessee)
10/21/11, 2:42 PM
Contributed
Understanding the effects of high-energy neutron interactions with certain materials is of considerable interest to the field of space radiation protection. Due to the expected radiation environment, neutron production and interactions with spacecraft materials will result in neutrons that can cause significant biological risk to crewmembers. For investigating incident particle interactions...
Santosh Bhatt
(University of Tennessee at Knoxville)
10/21/11, 2:54 PM
Contributed
The analytical abrasion-ablation model has been used for the quantitative predictions of the neutron and light ion spectra from nucleus-nucleus and nucleon-nucleus collisions. The abrasion stage of the current model is based on the Glauber's multiple scattering theory and applies the small angle approximation which assumes the longitudinal momentum transfer for the scattering amplitude to be...