Speaker
Travis Tune
(University of Tennessee at Knoxville)
Description
Diamond's properties make it a prime candidate for future use in particle detectors such as at the Compact Muon Solenoid at the LHC. Diamond is radiation hard, has a low thermal conductivity, and has a large bandgap. When a fast moving particle passes through the diamond, ionization occurs, leaving a trail of charge carriers in the diamond. By applying an external electric field, these secondary particles are induced to move towards the electrodes. The movement of these charge carriers induces a current, which can be measured. This is the detection mechanism for diamond detectors. A simulation of this detection mechanism was created using GEANT, a platform developed by CERN for simulating the passage of particles through materials. The program uses Monte-Carlo methods to simulate the ionization process through the material. It is capable of tracking each secondary produced. By using this information and the Shockley-Ramo theorem, we are able to simulate the detection mechanism.