Programme, SMASH condedly detectors on the moon

based on "The Final Frontier for Proton Decay" [arXiv:2405.15845](https://arxiv.org/abs/2405.15845) \blacksquare with Sebastian Baum, Cassandra Little, Paola Sala and Joshua Spitz

Figure: Olena Shmahalo/Quanta Magazine

Co-funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklod owska-Curie grant agreement No. 101081355.

Overview Adviser Advis

»This publication is supported by the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Postdoctoral Fellowship [Advertisement](#page-1-0)

Mineral Detection of Neutrinos and Dark Matter May 20-23, 2025 at JAMSTEC in Yokohama, Japan

MDν[DM'25 indico](https://indico.ijs.si/event/2583/)

Previous MD_vDM workshops:

- ¹ [Trieste 2022](https://agenda.infn.it/event/32181/)
- 2 [Arlington 2024](https://indico.phys.vt.edu/event/62/)

[Mineral detectors](#page-2-0)

Damage features from recoils in ancient minerals

Figure: LUX-ZEPLIN (LZ) Collaboration / SLAC National Accelerator Laboratory

Figure: Price+Walker (1963)

[Mineral detectors](#page-2-0)

Needle in a haystack

Large exposure from small target \Rightarrow kg $Gyr = 1$ Mton yr

Fluorescent nuclear track detectors for K^+ endpoints

Figures from [Kusumoto et al. \(2022\)](https://doi.org/10.1016/j.radmeas.2022.106715) show proton tracks in doped sapphire

- Theory of track formation?
- Are tracks robust to annealing?
- Use dE/dx proxy for tracks

[Backgrounds](#page-6-0) [Radiogenic](#page-6-0)

- Nuclear recoils from α -decays and spontaneous fission

Patrick Stengel (Jožef Stefan Institute) [NSF GCR MDDM](#page-0-0) January 15, 2025 7/13

[Backgrounds](#page-6-0) [Cosmogenic](#page-7-0)

Atmospheric neutrinos induce $\mathcal{O}(100)\, \mathcal{K}^+/100\, \mathrm{g/Gyr}$

Patrick Stengel (Jožef Stefan Institute) [NSF GCR MDDM](#page-0-0) January 15, 2025 8/13

Lunar neutrinos induce $\sim 0.5\, \textit{K}^+ / 100\, \text{g/Gyr}$ in Olivine

Lunar muons induce $\sim 0.1\, \mathcal{K}^+/100\, \mathrm{g/G}$ yr at $\sim 5\, \mathrm{km}$ depth

[Sensitivity](#page-10-0)

Expect $\lesssim 6$ K⁺/100 g/Gyr for $\tau(p \to \bar{\nu} K^{+}) > 5.9 \times 10^{33}$ yr

[Sensitivity](#page-10-0)

Increase dE/dx threshold from 100 to 500 MeV/cm

[Summary and outlook](#page-12-0)

Large exposures in MDs could probe DM and proton decay

New techniques allow for much larger readout capacity of 10¹¹ cm² at JAEA. Left: Ground after irradiation. Right: Irradiated after grinding

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_{τ}

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Integrate stopping power to estimate track length

Recognition of sparse tracks is a data analysis challenge

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01$ ppb $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Scattering cross sections \Rightarrow scattering rates

$$
\frac{d^2\sigma}{dq^2d\Omega_q} = \frac{d\sigma}{dq^2}\frac{1}{2\pi}\delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0 F(q)^2}{8\pi\mu_{XT}^2v}\delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right)
$$
\n
$$
\frac{d^2R}{dE_Rd\Omega_q} = 2M_T\frac{N_T}{M_TN_T}\int\frac{d^2\sigma}{dq^2d\Omega_q}n_X v f(\mathbf{v})d^3v \simeq \frac{\sigma_0 F(q)^2}{4\pi\mu_{XT}}n_X\hat{f}(v_q,\hat{q})
$$

Nuclear recoils induced by elastic WIMP-nucleus scattering

WIMP velocity distribution and induced recoil spectra

Patrick Stengel (Jožef Stefan Institute) [NSF GCR MDDM](#page-0-0) January 15, 2025 7/32

Mineral detectors used to constrain WIMPs before VOLUME 74, NUMBER 21 PH YS ICAL REVIEW LETTERS 22 MAY 1995 VOLUME 74, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MAY 1995

Use track length spectra to pick out WIMP signal

Track length spectra after smearing by readout resolution

Trade-off between read-out resolution and exposure

Sensitivity for different targets

Nchwaningite

Halite NaCl Gypsum $Ca(SO_4) \cdot 2(H_2O)$
Sinjarite $CaCl_2 \cdot 2(H_2O)$ Sinjarite $\begin{array}{ccc} \mathsf{CaCl}_2 \cdot 2(\mathsf{H}_2\mathsf{O}) \ \mathsf{O} \end{array}$ Olivine $Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)$ C Phlogopite $KMg_3AISi_3O_{10}F(OH)$ $^{2+}_{2}$ SiO₃(OH)₂ · (H₂O) C

$$
C^{238} = 10^{-11} g/g
$$

\n
$$
C^{238} = 10^{-11} g/g
$$

\n
$$
C^{238} = 10^{-11} g/g
$$

\n
$$
C^{238} = 10^{-10} g/g
$$

\n
$$
C^{238} = 10^{-10} g/g
$$

\n
$$
C^{238} = 10^{-10} g/g
$$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

Multiple samples to detect dark disk transit every \sim 45 Myr

 $m_X^{\rm disk}=100$ GeV $\,\sigma_{Xp}^{\rm disk}=10^{-43}\,{\rm cm^2}\,$ $m_X=500$ GeV $\,\sigma_{Xp}=5\times10^{-46}\,{\rm cm^2}$ Patrick Stengel (Jožef Stefan Institute) [NSF GCR MDDM](#page-0-0) January 15, 2025 17/32

Distinguish from halo with 20, 40, 60, 80, 100 Myr samples

Systematic uncertainties $\Delta_t = 5\% \Delta_M = 0.1\% \Delta_C = 10\% \Delta_{\Phi} = 100\%$

Change number of samples and sample spacing in time

Neutrinos come from a variety of sources

Nuclear recoil spectrum depends on neutrino energy

$$
\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_\nu \, \frac{d\sigma}{dE_R} \, \frac{d\phi}{dE_\nu}
$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_\nu \gtrsim 100$ MeV
- **•** Resonant π production at E_{ν} ∼ GeV
- Deep inelastic for $E_{\nu} \geq 10$ GeV

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Atmospheric ν 's originating from CR interactions

Atmospheric ν 's originating from $\overline{\text{CR}}$ interactions

Figure: E_{CR} to leptons, 1806.04140 Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today \sim 50 GV
- Recall CR primary $E_{CR} \gtrsim 10 E_{\nu}$

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Patrick Stengel (Jožef Stefan Institute) [NSF GCR MDDM](#page-0-0) January 15, 2025 25/32

Galactic contribution to ν flux over geological timescales

Figure: Supernova simulation after CC

Only ∼ 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

Galactic contribution to ν flux over geological timescales

Figure: Cosmic CC SNR, 1403.0007

Sensitivity to galactic CC SN rate depends on \mathcal{C}^{238}

Epsomite $[Mg(SO₄)\cdot7(H₂O)]$ Halite [NaCl]

Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2·(H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Difficult to pick out time evolution of galactic CC SN rate

Solar ν 's produced in fusion chains from H to He

Could use large exposure to differentiate between scenarios

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

