Mineral detectors on the moon

based on "The Final Frontier for Proton Decay" arXiv:2405.15845 with Sebastian Baum, Cassandra Little, Paola Sala and Joshua Spitz

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101081355.

Mineral Detection of Neutrinos and Dark Matter May 20-23, 2025 at JAMSTEC in Yokohama, Japan

MD ν DM'25 indico

Confirmed Speakers	Kohta Murase
Alexey Elykov	Lorenzo Caccianiga
Atsuhiro Umemoto	Noriko Hasebe
Ayuki Kamada	Patrick Huber
Christopher Kelso	Patrick Stengel
Christian Wittweg	Shigenobu Hirose
Daniel Ang	Takenori Kato
Daniel Snowden-Ifft	Tatsuhiro Naka
Emilie LaVoie-Ingram	Vsevolod Ivanov
Igor Jovanovic	William McDonough

Previous $MD\nu DM$ workshops:

- Trieste 2022
- Arlington 2024

Damage features from recoils in ancient minerals

Figure: LUX-ZEPLIN (LZ) Collaboration / SLAC National Accelerator Laboratory

Figure: Price+Walker (1963)

Needle in a haystack

Large exposure from small target $\Rightarrow \operatorname{kg} \operatorname{Gyr} = 1 \operatorname{Mton} \operatorname{yr}$

Fluorescent nuclear track detectors for K^+ endpoints

Figures from Kusumoto et al. (2022) show proton tracks in doped sapphire

- Theory of track formation?
- Are tracks robust to annealing?
- Use dE/dx proxy for tracks

Nuclear recoils from α -decays and spontaneous fission

Atmospheric neutrinos induce $\mathcal{O}(100)\,K^+/100\,\mathrm{g/Gyr}$

Figures from arXiv:2411.09634

- Conventional secondary mesons decay in flight on Earth
- Prompt fluxes from short-lived mesons decaying in flight

Suppression of lunar μ and ν fluxes

- Conventional secondary mesons decay at rest on the Moon
- Less suppression of short-lived mesons decaying in flight

Lunar neutrinos induce $\sim 0.5 \, K^+/100 \, {\rm g/Gyr}$ in Olivine

Lunar muons induce $\sim 0.1\,K^+/100\,\mathrm{g/Gyr}$ at $\sim 5\,\mathrm{km}$ depth

Expect $\lesssim 6\,K^+/100\,\mathrm{g/Gyr}$ for $au(p oar u K^+) > 5.9 imes 10^{33}\,\mathrm{yr}$

Increase dE/dx threshold from 100 to 500 MeV/cm

Large exposures in MDs could probe DM and proton decay

New techniques allow for much larger readout capacity

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Integrate stopping power to estimate track length

Recognition of sparse tracks is a data analysis challenge

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01 \, \text{ppb}$ $\Rightarrow 10^{13} \text{ voxels for } \alpha\text{-recoil tracks}$

Scattering cross sections \Rightarrow scattering rates

$$\begin{split} \frac{d^2\sigma}{dq^2d\Omega_q} &= \frac{d\sigma}{dq^2}\frac{1}{2\pi}\delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0F(q)^2}{8\pi\mu_{XT}^2v}\delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right) \\ \frac{d^2R}{dE_Rd\Omega_q} &= 2M_T\frac{N_T}{M_TN_T}\int\frac{d^2\sigma}{dq^2d\Omega_q}n_X\,v\,f(\mathbf{v})d^3v \simeq \frac{\sigma_0F(q)^2}{4\pi\mu_{XT}}n_X\hat{f}(\mathbf{v}_q,\hat{\mathbf{q}}) \end{split}$$

Differential cross section

- \bullet δ -function imposes kinematics
- $oldsymbol{\sigma}_0$ is velocity and momentum independent cross section for scattering off pointlike nucleus

$$F(q) \simeq \frac{9\left[\sin(qR) - qR\cos(qR)\right]^2}{(qR)^6}$$

Differential scattering rate

- Rate per unit time per unit detector mass for all nuclei
- Convolute cross section with astrophysical WIMP flux

$$\sigma_0^{SI} = \frac{4}{\pi} \mu_{XT}^2 \left[Z f_s^p + (A - Z) f_s^n \right]^2$$

Nuclear recoils induced by elastic WIMP-nucleus scattering

Rate per unit time per unit mass

$$\frac{dR}{dE_R} = \frac{n_X}{2} \frac{\sigma_{Xp}^{SI}}{\mu_{Xp}^2} A^2 F(q)^2 \eta(v_q)$$

Scattering kinematics \Rightarrow event rate

- Account for finite size of nucleus
- Convolute with WIMP flux
- Write cross section in terms of WIMP-nucleon interaction

WIMP velocity distribution and induced recoil spectra

Figure: (left) 1209.3339 (right) 1509.08767

Mineral detectors used to constrain WIMPs before

Figure: Snowden-Ifft et al. (1995)

Use track length spectra to pick out WIMP signal

Track length spectra after smearing by readout resolution

Trade-off between read-out resolution and exposure

Sensitivity for different targets

 $\begin{array}{lll} \mbox{Halite} & \mbox{NaCl} \\ \mbox{Gypsum} & \mbox{Ca}(\mbox{SO}_4) \cdot 2(\mbox{H}_2\mbox{O}) \\ \mbox{Sinjarite} & \mbox{CaCl}_2 \cdot 2(\mbox{H}_2\mbox{O}) \\ \mbox{Olivine} & \mbox{Mg}_{1.6}\mbox{Fe}_{0.4}^{2+}(\mbox{SiO}_4) \\ \mbox{Phlogopite} & \mbox{KMg}_3\mbox{AlSi}_3\mbox{O}_{10}\mbox{F}(\mbox{OH}) \\ \mbox{Nchwaningite} & \mbox{Mn}_2^{2+}\mbox{SiO}_3(\mbox{OH})_2 \cdot (\mbox{H}_2\mbox{O}) \end{array}$

 $C^{238} = 10^{-11} \text{ g/g}$ $C^{238} = 10^{-11} \text{ g/g}$ $C^{238} = 10^{-11} \text{ g/g}$ $C^{238} = 10^{-10} \text{ g/g}$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

Multiple samples to detect dark disk transit every \sim 45 Myr

 $m_X^{\rm disk} = 100 \,{\rm GeV} \,\, \sigma_{Xp}^{\rm disk} = 10^{-43} \,{\rm cm}^2 \,\, m_X = 500 \,{\rm GeV} \,\, \sigma_{Xp} = 5 \times 10^{-46} \,{\rm cm}^2$

Distinguish from halo with 20, 40, 60, 80, 100 Myr samples

Systematic uncertainties $\Delta_t=5\%$ $\Delta_M=0.1\%$ $\Delta_C=10\%$ $\Delta_\Phi=100\%$

Change number of samples and sample spacing in time

Neutrinos come from a variety of sources

Nuclear recoil spectrum depends on neutrino energy

$$\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_{\nu} \, \frac{d\sigma}{dE_R} \frac{d\phi}{dE_{\nu}}$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_{
 u} \gtrsim 100\,{
 m MeV}$
- Resonant π production at $E_{
 u} \sim {\sf GeV}$
- Deep inelastic for $E_{\nu} \gtrsim 10 \, {\rm GeV}$

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Atmospheric ν 's originating from CR interactions

Atmospheric ν 's originating from CR interactions

Figure: E_{CR} to leptons, 1806.04140

Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50\,\mathrm{GV}$
- ullet Recall CR primary $E_{CR}\gtrsim 10\,E_
 u$

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Recoils of many different nuclei

- Low energy peak from QE neutrons scattering ²³Na, ³¹P
- High energy tail of lighter nuclei produced by DIS

Background free regions for $\gtrsim 1\,\mu\mathrm{m}$

- Radiogenic n-bkg confined to low x, regardless of target
- Subdominant systematics from atmosphere, heliomagnetic field

Galactic contribution to ν flux over geological timescales

Figure: Supernova simulation after CC

Only \sim 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

Galactic contribution to ν flux over geological timescales

$$\frac{\mathrm{d}\phi}{\mathrm{d}E_{\nu}} = \dot{N}_{\mathrm{CC}}^{\mathrm{gal}} \frac{\mathrm{d}n}{\mathrm{d}E_{\nu}} \int_{0}^{\infty} \mathrm{d}R_{E} \frac{f(R_{E})}{4\pi R_{E}^{2}}$$

Only \sim 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCl] Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

M = 100 g

0.8 0.9

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins

- 10 Epsomite paleo-detectors
- ullet 100 g each, $\Delta t_{
 m age} \simeq$ 100 Myr

Determine σ rejecting constant rate

Could only make discrimination at 3σ for $\mathcal{O}(1)$ increase in star formation rate with $C^{238}\lesssim 5\,\mathrm{ppt}$

Solar ν 's produced in fusion chains from H to He

Figure: Today's flux at Borexino (Nature, 2018) and time dependence of GS metallicity model, 2102.01755

Could use large exposure to differentiate between scenarios

Could measure ⁸B flux over time

- Higher $E_{\nu} \Rightarrow$ longer tracks
- Highly dependent on solar core temperature with flux $\propto T^{24}$
- Sensitive to metallicity model

100 g samples with 15 nm resolution

- Look in single bin 15 − 30 nm
- ullet Assume $\Delta_t \sim 10\%$, $\Delta_{\mathcal{C}} = 10\%$
- $N_{
 m tot}^{
 m GS} \sim (1.63 \pm 0.05) imes 10^6 \ N_{
 m tot}^{
 m AGSS} \sim (1.52 \pm 0.05) imes 10^6$

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

