Dark Matter: Direct (Mineral) Detection

Figure: LZ Collaboration

Co-funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklod owska-Curie grant agreement No. 101081355.

Figure: Price+Walker '63

NSF GCR MDDM

1/40

2 Backgrounds

- Astrophysical neutrinos
- Cosmogenic muons
- Radiogenic

What do we (not) know about dark matter?

What we (typically) assume

- No E&M interactions
- Must be cold and stable
- Not in the Standard Model

3/40

Limits on dark matter interactions with nucleons

Spin-independent DM detection

Patrick Stengel (Jožef Stefan Institute)

Limits from current direct detection experiments

Direct Detection constraints on SI scattering

Figure: 2406.01705

Projected sensitivity of future direct detection experiments

Figure: 2209.07426

Characteristic dark matter interactions with nucleons

Figure: 2406.01705

Scattering cross sections \Rightarrow scattering rates

$$\frac{d^2\sigma}{dq^2d\Omega_q} = \frac{d\sigma}{dq^2} \frac{1}{2\pi} \delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0 F(q)^2}{8\pi\mu_{XT}^2 v} \delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right)$$
$$\frac{d^2R}{dE_R d\Omega_q} = 2M_T \frac{N_T}{M_T N_T} \int \frac{d^2\sigma}{dq^2 d\Omega_q} n_X v f(\mathbf{v}) d^3v \simeq \frac{\sigma_0 F(q)^2}{4\pi\mu_{XT}} n_X \hat{f}(\mathbf{v}_q, \hat{\mathbf{q}})$$

Differential cross section

- δ -function imposes kinematics
- σ_0 is velocity and momentum independent cross section for scattering off pointlike nucleus $F(q) \simeq \frac{9 [\sin(qR) - qR \cos(qR)]^2}{(qR)^6}$

Differential scattering rate

- Rate per unit time per unit detector mass for all nuclei
- Convolute cross section with astrophysical WIMP flux

$$\sigma_0^{SI} = \frac{4}{\pi} \mu_{XT}^2 \left[Z f_s^p + (A - Z) f_s^n \right]^2$$

Dark matter density in the galaxy

Velocity distribution in the Standard Halo Model (SHM)

Integrate Radon transform

$$\int \hat{f}(v_q, \hat{\boldsymbol{q}}) d\Omega_q = 2\pi \eta(v_q)$$

Mean inverse speed

$$\eta(v_q) = \int_{v > v_q} \frac{f(v)}{v} d^3v$$

Maxwellian in halo frame
$$ilde{f}(m{v})\sim \left(rac{3}{2\pi\sigma_v^2}
ight)^{3/2}e^{-3v^2/2\sigma_v^2}$$

Figure: 1209.3339

Spin- and velocity-independent WIMP-nucleus scattering

Patrick Stengel (Jožef Stefan Institute)

Example bracketing impact of astrophysical uncertainties

Figure: 1806.08714, variations of σ_v and $v_{\rm esc}$ in SHM and variations away from MB in SHM $\Delta \leq |f(\mathbf{v}) - f_{MB}(\mathbf{v})| / f_{MB}(\mathbf{v})$ for $f(\mathbf{v})$ composed of DM streams

Patrick Stengel (Jožef Stefan Institute)

Conventional direct detection experiments

Figure: 2406.01705

Backgrounds Ast

Astrophysical neutrinos

Neutrinos come from a variety of sources

Nuclear recoil spectrum depends on neutrino energy

$$\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_{\nu} \frac{d\sigma}{dE_R} \frac{d\phi}{dE_{\nu}}$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_{
 u}\gtrsim 100\,{
 m MeV}$
- Resonant π production at $E_{\nu} \sim \text{GeV}$
- Deep inelastic for $E_{
 u}\gtrsim 10\,{
 m GeV}$

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Backgrounds Astr

Astrophysical neutrinos

Atmospheric μ 's and ν 's originating from CR interactions

Atmospheric μ and ν_{μ} fluxes

Figure: 1806.04140

Atmospheric ν energy depends on CR energy and angle

Figure: E_{CR} to leptons, 1806.04140

Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Core collapse supernova ν 's

Figure: 1403.0007

Patrick Stengel (Jožef Stefan Institute)

Backgrounds

Astrophysical neutrinos

Solar ν 's produced in fusion chains from H to He

Backgrounds

Cosmogenic muons

Cosmogenic muons induce fast neutrons underground

Figure: astro-ph/0512125

Cosmogenic backgrounds suppressed in deep boreholes

Figure: $\sim 2 \text{Gyr}$ old Halite cores from $\sim 3 \text{km},$ as discussed in Blättler+ '18

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
$\begin{array}{rrrr} 2 \ km & 10^6/cm^2/Gyr \\ 5 \ km & 10^2/cm^2/Gyr \\ 6 \ km & 10/cm^2/Gyr \\ 50 \ m & 70/cm^2/yr \\ 100 \ m & 30/cm^2/yr \\ 500 \ m & 2/cm^2/yr \end{array}$	Depth	Neutron Flux
$\begin{array}{rrrr} 5 \ \text{km} & 10^2/\text{cm}^2/\text{Gyr} \\ 6 \ \text{km} & 10/\text{cm}^2/\text{Gyr} \\ 50 \ \text{m} & 70/\text{cm}^2/\text{yr} \\ 100 \ \text{m} & 30/\text{cm}^2/\text{yr} \\ 500 \ \text{m} & 2/\text{cm}^2/\text{yr} \end{array}$	2 km	10 ⁶ /cm ² /Gyr
6 km 10/cm²/Gyr 50 m 70/cm²/yr 100 m 30/cm²/yr 500 m 2/cm²/yr	5 km	$10^2/cm^2/Gyr$
50 m 70/cm²/yr 100 m 30/cm²/yr 500 m 2/cm²/yr	6 km	10/cm²/Gyr
100 m 30/cm ² /yr 500 m 2/cm ² /yr	50 m	70/cm ² /yr
500 m 2/cm ² /yr	100 m	$30/cm^2/yr$
	500 m	$2/cm^2/yr$

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238}\gtrsim 0.01\,{\rm ppb}$
- Ultra-basic rocks from mantle, $C^{238}\gtrsim 0.1\,{\rm ppb}$

Radiogenic

Radiogenic backgrounds from ²³⁸U contamination

$ \overset{238}{\longrightarrow} \overset{234}{\longrightarrow} \text{Th} \xrightarrow{\beta^{-}} \overset{234}{\longrightarrow} \text{Pa} \xrightarrow{\beta^{-}} \overset{234}{\longrightarrow} \overset{230}{\longrightarrow} \overset{230}{\longrightarrow} \text{Th} $ $ \overset{\alpha}{\longrightarrow} \overset{226}{\longrightarrow} \text{Ra} \xrightarrow{\alpha} \overset{222}{\longrightarrow} \text{Rn} \xrightarrow{\alpha} \dots \longrightarrow \overset{206}{\longrightarrow} \text{Pb} $ $ \overset{238U}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{234}{\longrightarrow} \dots \longrightarrow \overset{206}{\longrightarrow} \text{Pb} $			
Nucleus	Decay mode	T _{1/2}	•
23811	α	$4.468 imes10^9\mathrm{yr}$	
0	SF	$8.2 imes10^{15}$ yr	" $1lpha$ " events difficult to reject
²³⁴ Th	β^{-}	24.10 d	without additional decays
$^{234\mathrm{m}}Pa$	$eta^-~(99.84\%)$ IT (0.16 %)	1.159 min	• Reject \sim 10 μ m $lpha$ tracks
²³⁴ Pa	β^{-}	6.70 d	• Without α tracks, filter
²³⁴ U	α	$2.455\times10^{5}\text{yr}$	out monoenergetic ²³⁴ Th

Backgrounds R

Radiogenic

Fast neutrons from SF and (α, n) interactions

SF yields ~ 2 neutrons with $\sim MeV$

Each neutron will scatter elastically 10-1000 times before moderating

(α, n) rate low, many decay α 's

Heavy targets better for (α, n) and bad for neutron moderation, need H

Backgrounds

Radiogenic

Quick aside on data analysis and α -recoil background

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01 \text{ ppb}$ $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Outline

Dark matter recoiling off nuclei

Backgrounds

- Astrophysical neutrinos
- Cosmogenic muons
- Radiogenic

3 Mineral detectors for dark matter

Putting together all of the signals and backgrounds

Patrick Stengel (Jožef Stefan Institute)

Mineral detectors used to constrain WIMPs before

New techniques allow for much larger readout capacity

Color centers can be used to probe low mass dark matter

NSF GCR MDDM

30 / 40

Mineral detectors look for damage from recoiling nuclei

31 / 40

Track length spectra for various mineral targets

Track length spectra after smearing by readout resolution

33 / 40

Sensitivity for different targets

Halite Gypsum Sinjarite Olivine Phlogopite Nchwaningite $\begin{array}{c} {\sf NaCl} \\ {\sf Ca(SO_4)\cdot 2(H_2O)} \\ {\sf CaCl_2\cdot 2(H_2O)} \\ {\sf Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)} \\ {\sf KMg_3AlSi_3O_{10}F(OH)} \\ {\sf Mn_2^{2+}SiO_3(OH)_2\cdot (H_2O)} \end{array}$

 $\begin{array}{l} C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-10} \ {\rm g/g} \end{array}$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Mineral detectors can probe ultra-heavy dark matter

Figure: 2105.06473

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

38 / 40

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

Patrick Stengel (Jožef Stefan Institute)

Measure time-varying signals with a series of samples

Dark disk transit every \sim 45 Myr	Ages $t = 20, 40, 60, 80, 100 { m Myr}$
Spectra from dark disk crossing,	 Systematic uncertainty
MW halo, combined backgrounds	$\Delta_t=5\%$, $\Delta_M=0.1\%$,
$m_X^{ m disk} = 100~{ m GeV}~\sigma_{Xp}^{ m disk} = 10^{-43}{ m cm}^2$	$\Delta_{C}=10\%$, $\Delta_{\Phi}=100\%$
$m_X = 500 { m GeV} \sigma_{Xp} = 5 imes 10^{-46} { m cm}^2$	 > 1 samples more important

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50\,{
 m GV}$
- Recall CR primary $E_{CR}\gtrsim 10~E_{
 u}$

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Recoils of many different nuclei	Background free regions for $\gtrsim 1\mu{ m m}$
 Low energy peak from QE	 Radiogenic n-bkg confined to
neutrons scattering ²³ Na, ³¹ P	low x, regardless of target
 High energy tail of lighter	 Subdominant systematics from
nuclei produced by DIS	atmosphere, heliomagnetic field

Patrick Stengel (Jožef Stefan Institute)

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCl] Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins	Determine σ rejecting constant rate
• 10 Epsomite paleo-detectors • 100 g each, $\Delta t_{age} \simeq 100 \text{Myr}$	Could only make discrimination at 3σ for $\mathcal{O}(1)$ increase in star
	formation rate with $\mathit{C}^{238} \lesssim 5 { m ppt}$

Could use large exposure to differentiate between scenarios

Could measure ⁸ B flux over time	100 g samples with 15 nm resolution
• Higher $E_ u \Rightarrow$ longer tracks	 Look in single bin 15 – 30 nm
 Highly dependent on solar core temperature with flux ∝ T²⁴ Sensitive to metallicity model 	• Assume $\Delta_t \sim 10\%$, $\Delta_C = 10\%$ • $N_{ m tot}^{ m GS} \sim (1.63 \pm 0.05) \times 10^6$ $N_{ m tot}^{ m AGSS} \sim (1.52 \pm 0.05) \times 10^6$
Patrick Stengel (Jožef Stefan Institute) NSF GCF	R MDDM January 14, 2025 5/5

5/5