Classification of possible theories

Our work

Interference and neutrino oscillations

Conclusion 00

A Framework Between Quantum and Classical: An Illustration With Neutrinos

With D. Minic and T. Takeuchi

Nabin Bhatta

Virginia Tech Center for Neutrino Physics

CNP Research Day, 2024

December 13, 2024

What this talk is about

- This talk is about a genereralization of a particular aspect of quantum mechanics.
- Generalization: A framework with extra parameters that quantify the deviation from QM.
- Reduces to QM when these parameters are set to zero and interpolates between QM and CM at some other values.
- Can be seen as a way to study the foundations of QM.

Classification of possible theories

Our work 0000 Interference and neutrino oscillations

Conclusion 00

Overview

Motivation

Classification of possible theories

Our work

Interference and neutrino oscillations

Conclusion

Our work

Interference and neutrino oscillations $_{\rm OOO}$

Conclusion 00

Necessity of quantum foundations

- $\begin{array}{l} \mbox{Transformations} \Rightarrow \\ \mbox{Principle of relativity} \end{array}$
- Mathematical 'axioms' of QM ⇒?

Classification of possible theories

Our work

Interference and neutrino oscillations $_{\rm OOO}$

Conclusion

Necessity of quantum foundations

- Lorentz
 - Transformations \Rightarrow Principle of relativity
- Mathematical 'axioms' of QM ⇒?

- SR + Equivalence principle ⇒ GR
- Physical QM + Additional insight ⇒ A bigger theory (QG?)

Classification of possible theories

Our work

Interference and neutrino oscillations

Conclusion 00

Layers of explanation

Mathematical 'genotype'	Physical 'phenotype'	
Linearity of SE	Superposition, Interference	
Complex Hilbert space	Tensor product, Entanglement	

0000

Wait! Isn't quantum foundations just philosophy?

- Early debates on guantum foundations mostly concerned interpretations.
- Bell (1964) devised an 'operational' inequality that separates classical and quantum regimes by quantifying the amount of non-local correlation.
- Rigorously defined and provided a test for seemingly 'philosophical' issues like the viability of hidden-variable theories.
- Experimental confirmation of the violation by CHSH revitalized the field and led to applications in information processing.
- Many researchers follow this example to rigorously formulate other issues and design experiments to test them (Ex. macrorealism, non-contextuality).

Why tamper with quantum mechanics?

- Better understanding: Relaxing the mathematical structure or generalizing QM can give insights into the very aspects that were generalized.
- New phenomenology: Potentially describe phenomena not present in canonical QM but present in Nature.
- More parameters ⇒ Wider testing: Could allow for a wider testing of certain aspects of QM. Ex. SM and GR.
- Environmental mutations: Considerations in quantum gravity *might* make the modification unavoidable.

Classification of possible theories

Our work 0000 Interference and neutrino oscillations $_{\rm OOO}$

Conclusion 00

Quantum correlations

• Quantum theory violates the Bell-CHSH inequality

$$\mathcal{S} := |\langle A_0 B_0
angle + \langle A_0 B_1
angle + \langle A_1 B_0
angle - \langle A_1 B_1
angle| \leq 2,$$

where $A_0, B_0, A_1, B_1 \in \{\pm 1\}$

- The upper bound on S in quantum mechanics is $S = 2\sqrt{2}$ (Tsirelson bound).
- The algebraic maximum of S = 4 is consistent with relativity (Popescu & Rohrlich (1994)).

Conclusion 00

Higher-order interference

• Classically, for n available paths for a system in state α to end up in state $\beta,$

$$P(A, B, C, \cdots) = P(A) + P(B) + P(C) + \cdots$$

• In a double-slit experiment, quantum-mechanically

$$P(A,B) = |\psi_A + \psi_B|^2 = |\psi_A|^2 + |\psi_B|^2 + (\psi_B^* \psi_B + \psi_B^* \psi_A) - P(B) + (\psi_A^* \psi_B + \psi_B^* \psi_A) - I_2(A,B)$$

• For three slits/paths,

$$P(A, B, C) = |\psi_A + \psi_B + \psi_C|^2$$

= $P(A) + P(B) + P(C) + l_2(A, B) + l_2(B, C) + l_2(C, A)$

• Define (Sorkin, 1994) $I_3(A, B, C) := P(A, B, C) - P(A, B) - P(B, C) - P(C, A) + P(A) + P(B) + P(C).$ Our work

Interference and neutrino oscillations $_{\rm OOO}$

Conclusion

Hierarchy of "quantumness"

Quantumness	Correlations	Interference
Classical theory	$S \le 2$	$I_2 = 0, I_3 = 0$
Quantum theory	$2 < S \leq 2\sqrt{2}$	$I_2\neq 0,\ I_3=0$
"Super-quantum" theory	$2\sqrt{2} < S < 4?$	$I_2 \neq 0, \ I_3 \neq 0?$

Interference and neutrino oscillations

Conclusion

A minimal * generalization of QM

Our work

Our work only changes the "phases" $U(1) = \{e^{-iEt}\}$ of energy eigenstates using two deformation parameters (k, ξ) that quantify the deviation from QM.

Parameters $k \propto$ eccentricity and $\xi \propto$ size. Can be thought of as a 'mutation' of the phase.

Our work 0000

Neutrino oscillation probability

• Flavor eigenstates of neutrinos, $|\alpha\rangle$ and $|\beta\rangle$, are superpositions of their mass eigenstates, $|1\rangle$ and $|2\rangle$.

$$\begin{aligned} |\alpha\rangle &= \cos\theta \,|1\rangle + \sin\theta \,|2\rangle \\ |\beta\rangle &= -\sin\theta \,|1\rangle + \cos\theta \,|2\rangle \end{aligned}$$

• This causes the phenomena of interference and oscillation.

$$P(lpha
ightarrow eta) = \sin^2 2 heta \sin^2 \left(rac{\delta m^2 L}{4E}
ight) = \sin^2 2 heta \sin^2 (t_2 - t_1),$$

 $\left(rac{\delta m^2 c}{4E}
ight) = 1, \ L pprox c(t_2 - t_1).$

Observable phenotype: Modified oscillation formula

Our work

- In our framework, QM is deformed using two parameters $0 \le k^2 < 1$ and $0 \le \xi \le \frac{\pi}{2}$.
- The neutrino oscillation probability is now¹

$$P_{\mathcal{G}}(\alpha \to \beta) = \left(\cos^{2} \xi + \frac{k^{2}}{2}\sin^{2} \xi\right)\sin^{2} 2\theta \, \sin^{2} (t_{2} - t_{1}) + \mathcal{O}(k^{4})$$

• $\left(c_{\xi}^{2} + \frac{k^{2}}{2}s_{\xi}^{2}\right) \leq 1$, so k and ξ can be bound by considering bounds on $\sin^{2} 2\theta$.

¹NB, D. Minic, & T. Takeuchi, JHEP 2024, 31 (2024)

Classification of possible theories

Our work

Interference and neutrino oscillations 000

Conclusion

The "pseudoclassical" limit

• For *k* = 0,

$$P_G(\alpha \rightarrow \beta) = \cos^2 \xi \sin^2 2\theta \sin^2 (t_2 - t_1)$$
.

• Note that when $\xi = 0$, the deformation is turned off

$$P_{G}(\alpha \rightarrow \beta) = P(\alpha \rightarrow \beta).$$

• For
$$\xi = \frac{\pi}{2}$$
, $P_G(\alpha \to \beta) = 0$, a classical behaviour!

Classification of possible theories

Our work

Interference and neutrino oscillations $_{\odot \odot \odot}$

Conclusion 00

Two flavor oscillation/Double slit experiment

Classification of possible theories

How to quantify interference?

• $I_2(\alpha, \beta)$ is just the difference between the survival probabilities with and without intermediate measurement!²

$$I_{2} := \underbrace{P_{\alpha\alpha}(0,2t)}_{P_{\alpha\alpha}(A \to D)} - \left\{ \underbrace{P_{\alpha\alpha}(0,t)P_{\alpha\alpha}(t,2t)}_{P_{ACD}} + \underbrace{P_{\alpha\beta}(0,t)P_{\beta\alpha}(t,2t)}_{P_{ABD}} \right\}$$

• For canonical QM,

$$I_2(\alpha,\beta) = -\frac{1}{2}\sin^2\left(2t\right).$$

• In the current framework,

$$J_2(lpha, eta) = -2 \, c_\xi^2 \, \sin^2 t \left(2 \cos^2 t + c_\xi^2 \, \sin^2 t - 1
ight).$$

 $l_2 = 0$ called No Signaling in Time in literature. Phys. Rev. A 87, 052115

Classification of possible theories

Our work

Interference and neutrino oscillations $\circ \circ \bullet$

Conclusion 00

Covering one of the slits

- Superposition is lost.
- Taking the limit $\xi \rightarrow \frac{\pi}{2}$ is mathematically trivial but continuously interpolates between quantum-like and classical-like behavior.
- Could provide insights into quantum to classical transition.

Classification of possible theories

Our work

Interference and neutrino oscillations

Conclusion

Between quantum and classical

ication of possible theories

Interference and neutrino oscillations

Summary

- The foundations of QM can be studied rigorously and confronted with experiments.
- Modifications to QM not meant as empirical competitors but serve to clarify why QM is the way it is.
- Having alternative formulations *might* be useful in surviving environment-induced 'mutations', ex. quantum gravity.
- Particle physics processes like neutrino oscillations can be exploited for experimental tests.