Motivation 0000000 Theory ০০০০০০০০০০০ Result

Conclusion and Outlook

CNP research day

Diffuse Boosted Cosmic Neutrino Background

Xiaolin Qi

Department of Physics *xiaolinq76@vt.edu*

Collaborator: Gonzalo Herrera, Shunsaku Horiuchi

arXiv:2405.14946

Diffuse Boosted CnuB

N E E NOR

Xiaolin

December 13, 2024

イロト 不得 トイヨト イヨ

Motivation

Motivation

- C ν B (relic neutrinos) decoupled from matter at the early universe (\sim 1 second old).
- As the universe expanded, it further cooled down (\sim 1.95*K*).

${\bf C}\nu{\bf B}$ is extremely difficult to detect due to its low energy!

Conclusion and Outlook

Previous work

- 'overdensity'
- KATRIN placed an upper limit on neutrino overdensity Aker et al. 2022: 10¹¹

Figure: Irvine and Humphreys 1983

Conclusion and Outlook

Previous work

- 'overdensity'
- KATRIN placed an upper limit on neutrino overdensity Aker et al. 2022: 10¹¹

Figure: Irvine and Humphreys 1983

Conclusion and Outlook

Previous work

- 'overdensity'
- KATRIN placed an upper limit on neutrino overdensity Aker et al. 2022: 10¹¹

Figure: Irvine and Humphreys 1983

Conclusion and Outlook

Is it possible for $C\nu B$ to be boosted to higher energies?

Diffuse Boosted CnuB

December 13, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion and Outlook

Is it possible for $\textbf{C}\nu\textbf{B}$ to be boosted to higher energies?

YES!

Xiaolin

Diffuse Boosted CnuB

December 13, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion and Outlook

Is it possible for $\mathbf{C}\nu\mathbf{B}$ to be boosted to higher energies?

YES!

Cosmic rays scattering off relic neutrinos \rightarrow boost!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Xiaolin

Diffuse Boosted CnuB

December 13, 2024

Theory 0000000000

Result

Conclusion and Outlook

Previous work

Xiaolin

December 13, 2024

Theory 0000000000

Result

Conclusion and Outlook

Previous work

Xiaolin

Diffuse Boosted CnuB

December 13, 2024

7/24

VIRGINIA TECH.

三日 のへで

Previous work

Figure: Císcar-Monsalvatje, Herrera, and Shoemaker 2024

Milky Way $ightarrow \sim 10^{13}$

TXS 0506+056 $\rightarrow\,\sim\,10^{10}$

Xiaolin

Previous work

Figure: Císcar-Monsalvatje, Herrera, and Shoemaker 2024

Conclusion and Outlook

Schematic plot

Xiaolin

Figure: Herrera, Horiuchi, and Qi 2024

Conclusion and Outlook

Double integral

$\frac{d\phi_{\nu}}{dT_{\nu}} = \int_{z_{\min}}^{z_{\max}} dz \frac{c}{H_0} \frac{1}{\sqrt{(1+z)^3 \Omega_m + \Omega_{\Lambda}}} f_i(z) n_v (1+z)^3 \int_0^{\infty} dT_p \sigma_{p\nu}(T_p) \frac{d\phi_p}{dT_p} \frac{1}{T_{\nu}^{\max}(T_p)} \Theta\left[T_{\nu}^{\max}(T_p) - T_{\nu}(1+z)\right]$

Diffuse Boosted CnuB

December 13, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion and Outlook

Assumptions

CR composition

consider only protons

scattering process

consider only neutral current interactions

Xiaolin

Diffuse Boosted CnuB

December 13, 2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion and Outlook

Double integral

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion and Outlook

Double integral

$$\frac{d\phi_{\nu}}{dT_{\nu}} = \int_{z_{\min}}^{z_{\max}} dz \frac{c}{H_0} \frac{1}{\sqrt{(1+z)^3 \Omega_m + \Omega_\Lambda}} f_i(z) n_v (1+z)^3 \int_0^\infty dT_p \sigma_{p\nu}(T_p) \frac{d\phi_p}{dT_p} \frac{1}{T_{\nu}^{\max}(T_p)} \Theta\left[T_{\nu}^{\max}\left(T_p\right) - T_{\nu}(1+z)\right]$$

proton-neutrino scattering cross section

Diffuse Boosted CnuB

December 13, 2024

Conclusion and Outlook

Double integral

$\frac{d\phi_{\nu}}{dT_{\nu}} = \int_{z_{\min}}^{z_{\max}} dz \frac{c}{H_0} \frac{1}{\sqrt{(1+z)^3 \Omega_m + \Omega_{\Lambda}}} f_i(z) n_v (1+z)^3 \int_0^{\infty} dT_p \sigma_{p\nu} (T_p) \frac{d\phi_p}{dT_p} \frac{1}{T_{\nu}^{\max}(T_p)} \Theta \left[T_{\nu}^{\max}(T_p) - T_{\nu}(1+z) \right]$

Cosmic Ray spectrum in the Milky Way

Diffuse Boosted CnuB

December 13, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion and Outlook

Double integral

$$\frac{d\phi_{\nu}}{dT_{\nu}} = \int_{z_{\min}}^{z_{\max}} dz \frac{c}{H_0} \frac{1}{\sqrt{(1+z)^3 \Omega_m + \Omega_{\Lambda}}} f_i(z) n_v (1+z)^3 \int_0^{\infty} dT_p \sigma_{p\nu}(T_p) \frac{d\phi_p}{dT_p} \frac{1}{T_{\nu}^{\max}(T_p)} \Theta \left[T_{\nu}^{\max}(T_p) - T_{\nu}(1+z) \right]$$

maximal energy transferred to a neutrino in one scattering

Diffuse Boosted CnuB

December 13, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion and Outlook

Double integral

$$\frac{d\phi_{\nu}}{dT_{\nu}} = \int_{z_{\min}}^{z_{\max}} dz \frac{c}{H_0} \frac{1}{\sqrt{(1+z)^3 \Omega_m + \Omega_\Lambda}} f_i(z) u_{\nu} (1+z)^3 \int_0^{\infty} dT_p \sigma_{p\nu}(T_p) \frac{d\phi_p}{dT_p} \frac{1}{T_{\nu}^{\max}(T_p)} \Theta\left[T_{\nu}^{\max}(T_p) - T_{\nu}(1+z)\right]$$

redshift evolution of Cosmic Ray flux

Go to detailed explanation

Diffuse Boosted CnuB

December 13, 2024

Conclusion and Outlook

Double integral

$$\frac{d\phi_{\nu}}{dT_{\nu}} = \int_{z_{\min}}^{z_{\max}} dz \frac{c}{H_0} \frac{1}{\sqrt{(1+z)^3 \Omega_m + \Omega_\Lambda}} f_i(z) n_v (1+z)^3 \int_0^\infty dT_p \sigma_{p\nu}(T_p) \frac{d\phi_p}{dT_p} \frac{1}{T_{\nu}^{\max}(T_p)} \Theta \left[T_{\nu}^{\max}(T_p) - T_{\nu}(1+z) \right]$$

neutrino density at redshift z

Check the results!

Diffuse Boosted CnuB

December 13, 2024

Conclusion and Outlook

Redshift evolution of CR

Return to other terms

Redshift evolution of Cosmic Ray flux

$$f_i(z) = \frac{N_i(z)}{N_i(z_{min})}$$

$N_i(z)$: distribution of:

- SFR
- GRB
- QSO

Figure: Kotera, Allard, and Olinto 2010

Xiaolin

Diffuse Boosted CnuB

December 13, 2024

Xiaolin

Figure: Císcar-Monsalvatje, Herrera, and Shoemaker 2024

Xiaolin

Figure: Herrera, Horiuchi, and Qi 2024

Conclusion and Outlook

Result - incorporating overdensity

Figure: Herrera, Horiuchi, and Qi 2024

Xiaolin

Conclusion and Outlook

Result - incorporating overdensity

Figure: Herrera, Horiuchi, and Qi 2024

Xiaolin

Conclusion and Outlook

Conclusion and Outlook

Boosted flux

Relic neutrino flux is remarkably boosted.

Diffuse Boosted CnuB

December 13, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion and Outlook

Conclusion and Outlook

Boosted flux

Relic neutrino flux is remarkably boosted.

Stringent constraint on overdensity

With a sensitivity increasing of only \sim **150** compared to IceCube Gen2, we have a hope to directly detect $C\nu B$.

-

Conclusion and Outlook

Conclusion and Outlook

Boosted flux

Relic neutrino flux is remarkably boosted.

Stringent constraint on overdensity

With a sensitivity increasing of only \sim **150** compared to IceCube Gen2, we have a hope to directly detect $C\nu B$.

Outlook

Further improvement is possible by taking into account:

- heavy nuclei
- deep inelastic regime
- charged current interaction

 → a program in progress with
 Shunsaku Horiuchi, Ian
 Shoemaker, Gonzalo Herrela.

Questions?

Xiaolin

Diffuse Boosted CnuB

December 13, 2024

- Aker, M et al. (2022). "New constraint on the local relic neutrino background overdensity with the first KATRIN data runs". In: *Physical Review Letters* 129.1, p. 011806.
- Císcar-Monsalvatje, Mar, Gonzalo Herrera, and Ian M Shoemaker (2024). "Upper limits on the cosmic neutrino background from cosmic rays". In: Physical Review D 110.6, p. 063036.
- Herrera, Gonzalo, Shunsaku Horiuchi, and Xiaolin Qi (2024). "Diffuse Boosted Cosmic Neutrino Background". In: arXiv preprint arXiv:2405.14946.
- Irvine, JM and R Humphreys (1983). "Neutrino masses and the cosmic-neutrino background". In: Journal of Physics G: Nuclear Physics 9.7, p. 847.
- Kotera, Kumiko, Denis Allard, and Angela V Olinto (2010). "Cosmogenic neutrinos: parameter space and detectability from PeV to ZeV". In: *Journal of Cosmology and* Astroparticle Physics 2010.10, p. 013.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 の Q @

Vitagliano, Edoardo, Irene Tamborra, and Georg Raffelt (2020). "Grand unified neutrino spectrum at Earth: Sources and spectral components". In: *Reviews of Modern Physics* 92.4, p. 045006.

Diffuse Boosted CnuB

Diffuse Boosted CnuB

きょう きょう きょう きょう きょう

IceCube Gen2

- next-generation South Pole neutrino observatory
- "A core detector will be the IceCube-Gen2 optical array, with a size eight times larger than the current IceCube and optimized to detect neutrinos with energies ranging from hundreds of TeV to tens or even a few hundreds of PeV."

Figure: https://icecube-gen2.wisc.edu/about/icecube-gen2/

A 3D rendering of the planned IceCube-Gen2 extension. IceCube-Gen2 encompasses three new arrays—in-ice optical, surface, and extensive radio—that expand the capabilities of the current IceCube Neutrino Observatory. Image credit: IceCube Collaboration

24/24

Diffuse Boosted CnuB