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Chiral-odd GPDs: Non-perturbative structure

ℳ[iσ+j] = ∫
dz−

2π
eiP+z−x⟨N(p′ , s′ ) |Oj

QCD(z) |N(p, s)⟩ |z−=z⊥=0

= ∑
F=HT,H̃T,ET,ẼT

𝒦j
F(Δ, P, n; s′ , s)F(x, ξ, t)
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Multipole expansion 

Systematic / Mechanical interpretation


Large-  analysis 

Multipole GPDs at large 


Large-  relation


Chiral dynamics 

Chiral quark-soliton model


Polynomiality and sum rules


Dynamical/kinematical hierarchies


Numerical results 

Chiral-odd GPDs


Comparison with the lattice QCD

Nc

Nc

Nc

Oj
QCD(z) = ψ̄ (−z /2)[−z /2,z /2]iσ+jψ (z /2)

[JYKim, C.Weiss, PRD (2025)]

[JYKim, C.Weiss, In preparation]

Based on

[S. Diehl et al., EPJA (2025)]



Multipole expansion

Symmetric/Colinear frame 

ΔT ≠ 0, PT = 0

1, σ3

/113

X0 = 1

Xi
1 =

Δi

|ΔT |

Xij
2 =

ΔiΔj

|ΔT |2 −
1
2

δij

(Lz = 0)

(Lz = ± 1)

(Lz = 0, ± 1, ± 2)

Polarization operator

σi
T

Orbital angular momentum

Angular momentum selection rule 

Parity and time-reversal symmetries 

Emergence of the quadrupole structure

ℳ[σ+j] ∝ iϵ3jmσmX0G0 + Xj
1

|ΔT |
2MN

G1 + iϵ3jmσ3Xm
1

|ΔT |
2MN

G̃1 + iϵ3jlσmXmj
2

|ΔT |2

4M2
N

G2

ℳ[σ+j]

QCD operator

= ⊗

G0 = (1 − ξ2)HT +
|ΔT |2

2M2
N

H̃T − ξ2ET + ξẼT

G1 = 2H̃T + ET − ξẼT

G̃1 = ẼT − ξET

G2 = − 2H̃T

P ⋅ n = 1, t = Δ2, ξ = −
Δ ⋅ n
2P ⋅ n

Two vectors : Polarization operator ( )   

                       Momentum transfer ( )

σT

ΔT

[JYKim, C.Weiss, PRD (2025)]

ℳ[γ+, γ+γ5]



Large-  analysisNc

Multipole GPDs at large  

Multipole GPDs are now homogeneous in .


They become kinematically enhanced with increasing 
multipole order in the large-  limit.

Nc

Nc

Nc
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Large-  relation 

In the strict large-  limit, the relation between 
the two quadrupole GPDs is given as follows:


Test of the large-  relation: LQCD data show 
good agreement with the large-  prediction.

Nc

Nc

Nc
Nc

Gmf,n ∝ Mn
N Nc × function(Ncx, Ncξ, t)

MN = O(N1
c )

Eu−d
T = − 2H̃u−d

T

O(N2
c ) =Gmf,0 = Hu−d

T + ( t
8M2

N
−

ξ2

2 ) Eu−d
T + ξẼu−d

T

G̃mf,1 = Ẽu−d
T − ξEu−d

T

Gmf,2 = Eu−d
T

Gmf,1 = 2H̃u+d
T + Eu+d

T ≡ Ēu+d
T

O(N3
c ) =

O(N3
c ) =

O(N4
c ) =

[JYKim, C.Weiss, PRD (2025)] [C. Alexandrou et al., PRD (2022)]

[JYKim, C.Weiss, PRD (2025)]
[JYKim, 2506.21013]

[K. Tezgin et al., PRD (2024)]

[P. Schweitzer, C.Weiss, PRC (2016)]



Chiral quark-soliton model

Effective chiral theory in the large-  limit of QCD 

Embodies low-energy effective theory


Derived from QCD instanton vacuum


Mechanism of the chiral symmetry breaking


Degrees of freedom Goldstone boson + Massive quark

Nc

→

δS[U ]
δU

U=Ucl

= 0

Effective action
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QCD operator

Effective operator local operator 
[pion + massive quark]

S = − ∫ d4xψ̄[i∂μγμ + iMUγ5]ψ

Semicalssical approximation (mean-field picture)

Effective operator 

The QCD operator is matched to the effective degrees of 
freedom.


It is obtained with parametrically the same accuracy as 
the effective action.

Oj
QCD(z) = ψ̄ (−z /2)[−z /2,z /2]iσ+jψ (z /2)

Oj
eff(z) = ψ̄ (−z /2)iσ+jψ (z /2) [D. Diakonov, M. Polyakov, C.Weiss., NPB (1997)]

[Ch. Christov et al., PPNP (1996)]

[J. Balla, M. Polyakov, C.Weiss., NPB (1998)]

[D. Diakonov, V. Petrov P. Pobylitsa, NPB (1988)]



Mean-field GPDs: Polynomilaity and sum rules /116

Matrix element of the effective operator

General constraints on GPDs

∫ dx xm−1Gmf,0(x, ξ, t) =
m+1

∑
i=even

ξiFi,m−1
mf,0 (t)

∫ dx Gmf,0(x, ξ, t) = Hu−d
T (t) + ( t

8M2
N

−
ξ2

2 ) Eu−d
T (t)

⟨N′ |Oj
eff(z) |N⟩ = lim

T→∞

1
Z

𝒩eip4
T
2 −ip′ 4

T
2 ∫ d3x∫ d3ye−ip′ ⋅y+ip′ ⋅x

∫ DψDψ†DUJN′ (y, T/2)Oj
eff(z)JN(x, − T/2)exp[−S]

Gmf = ∑
n

⟨n | . . . |n⟩ Multipole GPDs in the single 
particle representation

Three point correlation function 
 semiclassical approximation→

Polynomilaity: Discrete symmetry (parity, time-reversal) 
and Minimal generalization of the rotation symmetry 
(hedgehog symmetry)

Sum rules: Hedgehog symmetry and selection rules for 
quantum numbers of the single particle wave function

Enhances the reliability of predictions based on the mean-field picture.

[JYKim, C.Weiss, PRD (2025)] [P. Schweitzer et al, PRD (2002)]
[P. Schweitzer et al, PRD (2003)]



Mean-field GPDs: Dynamical/kinematical hierarchies /117

Hu−d
T

 scalingNc

Hu−d
T

Multipole structure

N2
c

Gmf,0 (mo.)

Kinematical hierarchy

Dynamical hierarchy

<

<

<

Gmf,1 (di.)

N3
c

2H̃u+d
T + Eu+d

T

∼

∼

∼2H̃u+d
T + Eu+d

T

N3
c

Ẽu−d
T

Ẽu−d
T

<

<

N4
c

Eu−d
T

Eu−d
T

G̃mf,1 (di.) Gmf,2 (Quad.)

<

Organizing the GPDs in multipole order 

Kinematical enhancement: Due to the parametric enhancement in the  scaling of multipole GPDs, their 
magnitudes increase at non-exceptional  as the multipole order rises.


Dynamical (chiral) enhancement: Due to the additional -weight, long-range contributions are amplified as 
the multipole order increases, leading to an enhancement at small  in PDFs.

Nc
x

r
x

Gmf,n ∝ Mn
N Nc ∫ d3r rnρn(r) [moment of n-pole GPD]

ρ(r) [dimensionless dist.]

MN = O(N1
c )



Discrete level                       ~ Valence quark contribution 

Gradient expansion (Grad.) ~ Dirac-sea quark contribution


                                                 Captures long-distance contribution or chiral dynamics.

Chiral-odd GPDs: Monopole /118

gu−d
T = 0.85 (0.76)

(0.09) [lev] = 0.88 (0.80)
(0.08) [grad]

Monopole GPD 

Valence quark approximation is comparable to the 
gradient expansion.


Antiquark (quark) contributions are very small (large).


Both results show good agreement with lattice QCD.

Small antiquark

gu−d
T = 0.97 (5) [LQCD]

Forward limit Hu−d
T

quark

antiquark

[S. Park et al., PRD (2022)]



Chiral-odd GPDs: Dipole /119

-even dipole GPD 

The shape of the GPD in the valence quark approximation differs 
from that in the gradient expansion.


Quark and antiquark contributions become large for Grad.


Strong antisymmetric behavior: sea quark contribution cancels in 
the first moment → quark model prediction remains valid.


Second moment reveals significant dominance of sea quarks.

ξ

κu+d
T = 7.56 (6.36)

(1.20) [lev] = 4.25 (9.37)
(−5.12) [grad]

Large antiquark

Forward limit Ēu+d
T = 2H̃u+d

T + Eu+d
T

-odd dipole GPD 

Antisymmetric in  → first moment vanishes.


A nodal point appears.


The predicted shape of the GPD strongly 
depends on the underlying dynamics.

ξ

ξ

Ẽu−d
T

∫ dx Ẽu−d
T (x, ξ = 0.25,t = − 0.5 GeV2) = 0



Chiral-odd GPDs: Quadrupole /1110

Quadrupole GPD 

A very strong chiral enhancement is predicted.


The distribution is nearly symmetric, resulting in a large first 
moment.


The quadrupole structure is clearly distinguished from 
monopole and dipole ones by its antiquark dominance.

Comparison with LQCD 

Lattice QCD also predicts antiquark dominance.


This dominance cannot be explained by the 
valence quark approximation.

∫ dx Eu−d
T (x,0,t = − 0.69 GeV2)

= 2.62 [grad]

= 2.10 (67) [LQCD]

Dominance of 
antiquark

Eu−d
T = − 2H̃u−d

T
Forward limit

= 0.74 [lev]

Qu−d
T = 3.95 (2.92)

(1.03) [lev] = 17.38 (8.29)
(9.09) [grad]

[C. Alexandrou et al., PRD (2022)]



Conclusions 

Multipole expansion provides a systematic classification of GPDs from the perspective of non-perturbative 
(chiral) physics.


General constraints on GPDs, such as polynomiality and sum rules, are satisfied within the mean-field 
picture.


Kinematical and dynamical hierarchies among GPDs have been established.


Chiral dynamics play an increasingly important role with higher multipole orders, leading to enhancements 
at small .


This study will provide guidance for parameterizing the GPDs.


Outlook 

The same multipole analysis can be applied to chiral-even GPDs (vector and axial-vector).


This approach can also be extended to GPDs involving higher-spin particles and their transitions, revealing 
an even richer multipole structure.

x

s

Summary /1111

Thank you very much!



Chiral-odd GPDs: First moment /1112

Pion mass dependence

Tensor form factors [N.Y.Ghim et al., PRD (2025)]

[N.Y.Ghim et al., PRD (2025)]


