Towards improved hadron femtography with hard exclusive reactions, IV

How to extract GPDs from DVCS ?

Zhite Yu (Jefferson Lab, Theory Center)

In collaboration with Jianwei Qiu and Nobuo Sato

PRD 107 (2023) 014007 PRD 111 (2025) 094014 papers in preparation

Jul/30/2025 JLab

Deeply Virtual Compton Scattering (DVCS)

Deeply Virtual Compton Scattering (DVCS)

$$\begin{split} & \int_{P} W^{\mu\nu}(p,q) = \frac{1}{4\pi} \int d^{4}z \, e^{iq \cdot z} \langle p | J^{\nu}(z/2) J^{\mu}(-z/2) \rangle |p\rangle \\ & \simeq \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left[\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] + \frac{1}{p \cdot q} \left(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu} \right) \left[\sum_{q} c_{q}^{2} x_{B} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left[\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] + \frac{1}{p \cdot q} \left(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu} \right) \left[\sum_{q} c_{q}^{2} x_{B} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left[\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] + \frac{1}{p \cdot q} \left(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu} \right) \left[\sum_{q} c_{q}^{2} x_{B} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left[\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] + \frac{1}{p \cdot q} \left(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu} \right) \left[\sum_{q} c_{q}^{2} x_{B} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left[\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] + \frac{1}{p \cdot q} \left(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu} \right) \left[\sum_{q} c_{q}^{2} x_{B} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left[\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left(\frac{1}{2} \sum_{q} c_{q}^{2} f_{q}(x_{B}) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left(\frac{1}{q} \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left(f^{\mu}(x_{B}) \right) \right] \\ & = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \left(\frac{1}{q} \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) \right) \left(\frac{q^{\mu}q^{\nu}}{q^{\mu}} \right) \\ & = \left(-g^{\mu\nu}q^{\nu} + \frac{q^{\mu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}q^{\nu}}{q^{\mu}} \right) \right) \\ & = \left(\frac{q^{\mu}q^{\nu}}{q^{\mu}} \right) \left(\frac{q^{\mu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}q^{\nu}}{q^{\mu}} \right) \right) \\ & = \left(\frac{q^{\mu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\nu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}(x_{B}) + \frac{q^{\mu}q^{\mu}q^{\nu}}{q^{\mu}} \right) \right) \\ & = \left(\frac{q^{\mu}q^{\mu}q^{\nu}}{q^{\mu}} \right) \left(f^{\mu}$$

Jefferson Lab

Bethe-Heitler subprocess!

Experiments measure cross section $N(p) + e(\ell) \rightarrow N(p') + e(\ell') + \gamma(q')$

$$\sigma \propto |\mathcal{M}_{\rm BH} + \mathcal{M}_{\rm DVCS}|^2 = |\mathcal{M}_{\rm BH}|^2 + 2\operatorname{Re}\{\mathcal{M}_{\rm BH}^*\mathcal{M}_{\rm DVCS}\} + |\mathcal{M}_{\rm DVCS}|^2$$

contains ϕ in denominator $\propto \frac{1}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \propto \frac{1}{(1 + a\cos\phi)(1 + b\cos\phi)}$

□ Analysis procedure

- > For each event, boost to Breit frame and compute observables (x_B, Q^2, t, ϕ)
- > Bin (x_B, Q^2, t) .
- For each (x_B, Q^2, t) bin, make histogram of ϕ .
- > Subtract $|M_{BH}|^2$ using known (F_1, F_2) measurements.
- \succ Fit ϕ histogram to some harmonic template.
- Compare with theory to extract GPD moments.

The binning introduces extra systematic uncertainties!

□ Single diffractive hard exclusive process (SDHEP)

View in lab frame $N(p) + e(p_2) \rightarrow N(p') + e(q_1) + \gamma(q_2)$

[Qiu & Yu, PRD 107 (2023) 014007] [Qiu, Sato, Yu, PRD 111 (2025) 094014] [in preparation]

Single diffractive: $N(p) \rightarrow N(p') + A^*(p_1 = p - p')$ factorize Hard exclusive: $A^*(p_1) + e(p_2) \rightarrow e(q_1) + \gamma(q_2)$

Necessary condition for factorization:

$$q_T \gg \sqrt{-t} \simeq \Lambda_{\rm QCD}$$

Channel expansion and power counting

 $+\cdots (n>3)$

Channel expansion and power counting

Channel expansion and power counting

NNLP

One more physically polarized parton in A^*

 \Rightarrow one more suppression of $\sqrt{-t}/q_T$

- Consistent power counting
- Channel expansion = power expansion

Jefferson Lab

NNNLP...

 $+\cdots$ (n>3) $\mathcal{O}\left(-t/q_T^3\right)$

SDHEP frame and ϕ distribution

- $\blacktriangleright \phi$ distribution is determined by A^* spin states!
- > Both A^* and e are along z axis, so there is no ϕ in denominators.

n = 1: γ^* channel ---- BH subprocess

Advantage: the quasi-real state A^* has well-defined helicity for all n = 1, 2, 3, ...

n = 2: $[q\overline{q}]$ channel --- DVCS (twist-2)

Advantage: the quasi-real state A^* has well-defined helicity for all n = 1, 2, 3, ...

□ Amplitude level

 $\begin{array}{ll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

Cross section level

$$|\mathcal{M}_{\mathrm{I}} + \mathcal{M}_{\mathrm{II}} + \cdots|^{2} = \underbrace{|\mathcal{M}_{\mathrm{I}}|^{2}}_{\mathrm{LP}} + \underbrace{2\operatorname{Re}\left(\mathcal{M}_{\mathrm{I}}\mathcal{M}_{\mathrm{II}}^{*}\right)}_{\mathrm{NLP}} + \cdots$$

□ Amplitude level

 $\begin{array}{lll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

Cross section level $|\mathcal{M}_{I} + \mathcal{M}_{II} + \cdots|^{2} = \underbrace{|\mathcal{M}_{I}|^{2}}_{LP} + \underbrace{2 \operatorname{Re} \left(\mathcal{M}_{I} \mathcal{M}_{II}^{*}\right)}_{NLP} + \cdots$ $\sin[(\Delta \lambda_{A})\phi]$ $\Delta \lambda_{A} = \lambda_{A} - \lambda'_{A}$ $LP \qquad |\mathcal{M}|^{2}_{LP} = |\mathcal{M}_{I}|^{2} \quad \text{No }\phi \text{ modulation. } \lambda_{A}^{\gamma} = +1 \text{ and } \lambda_{A}^{\gamma} = -1 \text{ do NOT interfere until NNLP.}$

"twist-2"

□ Amplitude level

 $\begin{array}{lll} \mathsf{LP} & \mathcal{M}_{\mathrm{I}}: & A^{*} = \boldsymbol{\gamma}_{T}^{*} \; (\lambda_{A}^{\gamma} = \pm 1) \\ \mathsf{NLP} & \mathcal{M}_{\mathrm{II}}: & (1) \; A^{*} = \boldsymbol{\gamma}_{L}^{*} \; (\lambda_{A}^{\gamma} = \mathbf{0}); & (2) \; A^{*} = [q\bar{q}] \; (\lambda_{A}^{q} = \mathbf{0}) & + [gg] \; (\text{high order}) \\ \mathsf{NNLP:} \dots \end{array}$

$$\frac{d\sigma}{dt \, d\xi \, d\cos\theta \, d\phi} = \frac{1}{2\pi} \frac{d\sigma^{\text{unpol}}}{dt \, d\xi \, d\cos\theta} \cdot \left[1 + A_{UU}^{\text{NLP}}(t, \xi, \cos\theta) \cos\phi + \lambda_e A_{UL}^{\text{NLP}}(t, \xi, \cos\theta) \sin\phi \right]$$
Interference of γ_T^* and GPD moments
$$A_{UU}^{\text{NLP}} \propto \frac{2\sin\theta}{\xi} \left(F_1^2 - \frac{t}{4m^2} F_2^2 \right) - \frac{4 + (1 - \cos\theta)^2}{\sin\theta \cos^2(\theta/2)} \left[F_1 \operatorname{Re} \mathcal{H} - \frac{t}{4m^2} F_2 \operatorname{Re} \mathcal{E} + \xi \left(F_1 + F_2 \right) \operatorname{Re} \tilde{\mathcal{H}} \right]$$

$$A_{UL}^{\text{NLP}} \propto \frac{3 - \cos\theta}{\sin\theta} \left[F_1 \operatorname{Im} \mathcal{H} - \frac{t}{4m^2} F_2 \operatorname{Im} \mathcal{E} + \xi \left(F_1 + F_2 \right) \operatorname{Im} \tilde{\mathcal{H}} \right]$$

$$SDHEP \text{ frame}$$

Cross section within NLP: introducing proton spin

$$\frac{d\sigma}{dt \, d\xi \, d\phi_S \, d\cos\theta \, d\phi} = \frac{1}{(2\pi)^2} \frac{d\sigma^{\text{unpol}}}{dt \, d\xi \, d\cos\theta} \cdot \left[1 + \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}} \cos\phi_S + (\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}) \sin\phi + (A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LU}^{\text{NLP}}) \cos\phi + (\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}) \sin\phi + s_T (A_{TU,1}^{\text{NLP}} \cos\phi_S \sin\phi + A_{TU,2}^{\text{NLP}} \sin\phi_S \cos\phi) + \lambda_e s_T (A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi) \right]$$
In the experimental setting (fixed lab frame),
• Nucleon spin vector $\vec{s}_N = (s_T, 0, \lambda_N)$
• Electron spin vector $\vec{s}_e = (0, 0, \lambda_e)$
Subscripts: (nucleon, electron)
U = Unpolarized
L = Longitudinally polarized
T = Transversely polarized

$$\frac{d\sigma}{dt \, d\xi \, d\phi_S \, d\cos\theta \, d\phi} = \frac{1}{(2\pi)^2} \frac{d\sigma^{\text{unpol}}}{dt \, d\xi \, d\cos\theta} \cdot \left[1 + \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}} \cos\phi_S \right] \\ + \left(A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LL}^{\text{NLP}} \right) \cos\phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}} \right) \sin\phi \\ + s_T \left(A_{TU,1}^{\text{NLP}} \cos\phi_S \sin\phi + A_{TU,2}^{\text{NLP}} \sin\phi_S \cos\phi \right) \\ + \lambda_e s_T \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi \right) \right]$$

$$\Sigma_{UU}^{\rm LP} = \left[\frac{1}{\sin^2(\theta/2)} + \sin^2(\theta/2)\right] \left[\left(\frac{1-\xi^2}{2\xi^2}\frac{-t}{m^2} - 2\right)\left(F_1^2 - \frac{t}{4m^2}F_2^2\right) - \frac{t}{m^2}(F_1 + F_2)^2\right] \\ A_{LL}^{\rm LP} = \frac{1}{\Sigma_{UU}^{\rm LP}} \cdot \left[\frac{1}{\sin^2(\theta/2)} - \sin^2(\theta/2)\right](F_1 + F_2)\left[F_1\left(\frac{-t}{\xi m^2} - \frac{4\xi}{1+\xi}\right) - \frac{t}{m^2}F_2\right] \\ A_{TL}^{\rm LP} = \frac{1}{\Sigma_{UU}^{\rm LP}} \cdot \frac{\Delta_T}{2m}\left[\frac{1}{\sin^2(\theta/2)} - \sin^2(\theta/2)\right](F_1 + F_2)\left[-4F_1 + \frac{1+\xi}{\xi}\frac{-t}{m^2}F_2\right]$$

Quadratic in (F_1, F_2)

Control the rate (unpolarized cross section). No ϕ modulation.

$$\frac{d\sigma}{dt\,d\xi\,d\phi_S\,d\cos\theta\,d\phi} = \frac{1}{(2\pi)^2} \frac{d\sigma^{\text{unpol}}}{dt\,d\xi\,d\cos\theta} \cdot \left[1 + \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}} \cos\phi_S + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right) \sin\phi + \left(A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LU}^{\text{NLP}}\right) \cos\phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right) \sin\phi + s_T \left(A_{TU,1}^{\text{NLP}} \cos\phi_S \sin\phi + A_{TU,2}^{\text{NLP}} \sin\phi_S \cos\phi\right) + \lambda_e s_T \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right) \right]$$

No contribution to the rate,

 \Rightarrow only to azimuthal modulations $(\cos\phi, \sin\phi)$

$$\frac{d\sigma}{dt\,d\xi\,d\phi_S\,d\cos\theta\,d\phi} = \frac{1}{(2\pi)^2} \frac{d\sigma^{\text{unpol}}}{dt\,d\xi\,d\cos\theta} \cdot \left[1 + \lambda_e \lambda_N A_{LL}^{\text{LP}} + \lambda_e s_T A_{TL}^{\text{LP}} \cos\phi_S \right]$$

$$\text{NLP: from } \gamma_T^* \cdot \gamma_L^* \text{ and } \gamma_T^* - [q\bar{q}] \text{ interference}$$

$$\int A_{XX}^{\text{NLP}} = \frac{1}{\Sigma_{UU}^{\text{LP}}} \cdot \left(\frac{-t}{m\sqrt{s}}\right) \Sigma_{XX}^{\text{NLP}}$$

$$+ \left(A_{UU}^{\text{NLP}} + \lambda_e \lambda_N A_{LL}^{\text{NLP}}\right) \cos\phi + \left(\lambda_e A_{UL}^{\text{NLP}} + \lambda_N A_{LU}^{\text{NLP}}\right) \sin\phi$$

$$+ s_T \left(A_{TU,1}^{\text{NLP}} \cos\phi_S \sin\phi + A_{TU,2}^{\text{NLP}} \sin\phi_S \cos\phi\right)$$

$$+ \lambda_e s_T \left(A_{TL,1}^{\text{NLP}} \cos\phi_S \cos\phi + A_{TL,2}^{\text{NLP}} \sin\phi_S \sin\phi\right)$$

$$\Sigma_{UU}^{\text{NLP}} = \frac{\Delta_T}{2m} \frac{1+\xi}{\xi} \left[\frac{2\sin\theta}{\xi} \left(F_1^2 - \frac{t}{4m^2}F_2^2\right) - \frac{4+(1-\cos\theta)^2}{\sin\theta\cos^2(\theta/2)} \left(M_1 \cdot \text{Re} V_F\right)\right],$$

- Linear in GPD moments $V_{\mathcal{F}} = (\mathcal{H}, \mathcal{E}, \mathcal{H}, \mathcal{E})^T$
- Controlled by the real matrix M, same for real and imaginary parts of GPD moments

 $M_i = (M_{i1}, M_{i2}, M_{i3}, M_{i4})$ (see next slide)

8 asymmetries \Leftrightarrow 8 (real) GPD moments

 $\Sigma_{LL}^{\rm NLP} = -\frac{\Delta_T}{m} \left[\sin \theta (F_1 + F_2) \left(\frac{1+\xi}{\xi} F_1 + F_2 \right) + \frac{3 - \cos \theta}{\sin \theta} \left(\frac{M_2 \cdot \operatorname{Re} V_{\mathcal{F}}}{V_{\mathcal{F}}} \right) \right],$ $\Sigma_{TL,1}^{\mathrm{NLP}} = 2\sin\theta \left(F_1 + F_2\right) \left[F_1 + \left(\frac{\xi}{1+\xi} + \frac{t}{4\xi m^2}\right)F_2\right] + \frac{2(3-\cos\theta)}{\sin\theta} \left(\frac{M_3 \cdot \operatorname{Re} V_{\mathcal{F}}}{}\right),$ $\Sigma_{TL,2}^{\text{NLP}} = 2\sin\theta \left(F_1 + F_2\right) \left(F_1 + \frac{t}{4m^2}F_2\right) - \frac{2(3 - \cos\theta)}{\sin\theta} \left(M_4 \cdot \operatorname{Re} V_{\mathcal{F}}\right),$ $\Sigma_{UL}^{\rm NLP} = -\frac{\Delta_T}{m} \frac{1+\xi}{\xi} \frac{3-\cos\theta}{\sin\theta} \left(M_1 \cdot \operatorname{Im} V_{\mathcal{F}} \right),$ $\Sigma_{LU}^{\rm NLP} = -\frac{\Delta_T}{2m} \frac{4 + (1 - \cos\theta)^2}{\sin\theta\cos^2(\theta/2)} \left(M_2 \cdot \operatorname{Im} V_{\mathcal{F}} \right),$ $\Sigma_{TU,1}^{\text{NLP}} = \frac{4 + (1 - \cos \theta)^2}{\sin \theta \cos^2(\theta/2)} \left(M_3 \cdot \text{Im} V_{\mathcal{F}} \right),$ $\Sigma_{TU,2}^{\text{NLP}} = \frac{4 + (1 - \cos \theta)^2}{\sin \theta \cos^2(\theta/2)} \left(M_4 \cdot \operatorname{Im} V_{\mathcal{F}} \right).$

Summary --- SDHEP frame vs. Breit frame

D Breit frame: centered around $\gamma^*(q)$

- Center around a high-virtuality state
- Mixes soft and hard scales
- Inconsistent for DVCS and BH
- Complicated ϕ modulations

SDHEP frame: centered around $A^*(\Delta)$

- Center around a low-virtuality state
- Clear physical picture: scale separation
- Unifies γ^* and GPD channels coherently: $A^* = \gamma^*$, $[q\overline{q}]$, ...
- Clear azimuthal distributions
- Unified frame for ALL SDHEPs

Thank you!

