Towards improved hadron femtography with hard exclusive reactions, edition IV, Jefferson Lab, 2025

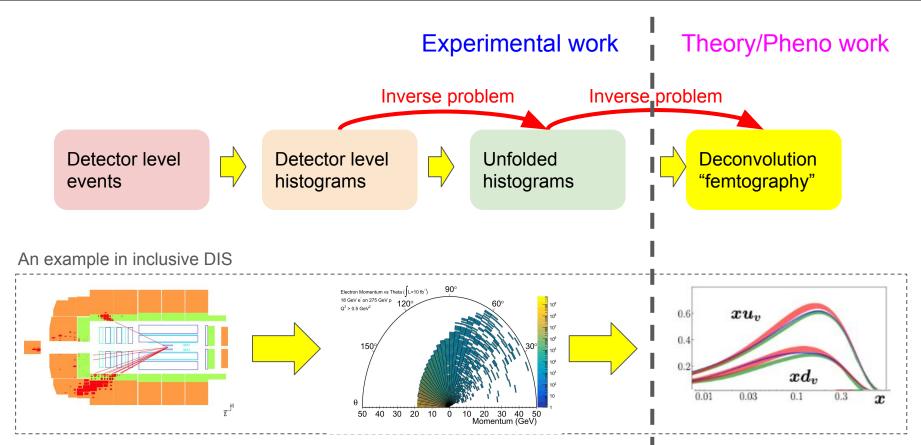
July 28, 2025 to August 1, 2025 America/New York timezone

Reconstructing GPDs using pixel based approach

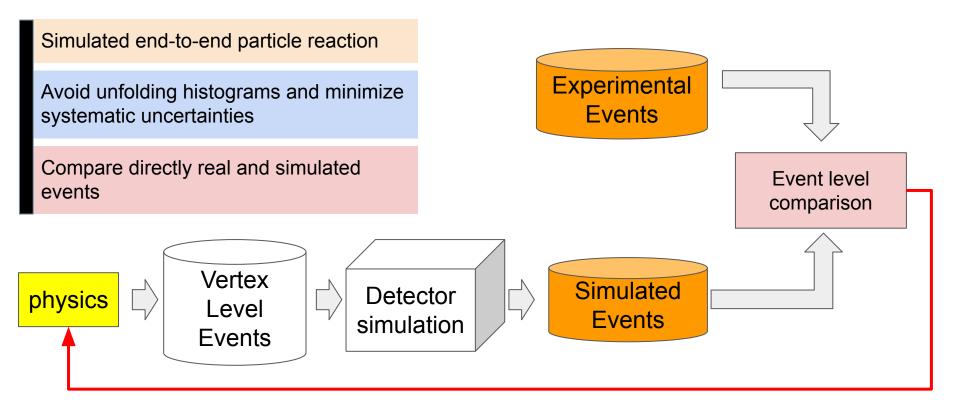
Nobuo Sato

In collaboration with: Kevin Braga, Markus Diefenthaler, Steven Goldenberg, Daniel Lersch, Yaohang Li, Jian-Wei Qiu, Kishansingh Rajput, Felix Ringer, Nobuo Sato, Malachi Schram

Motivations

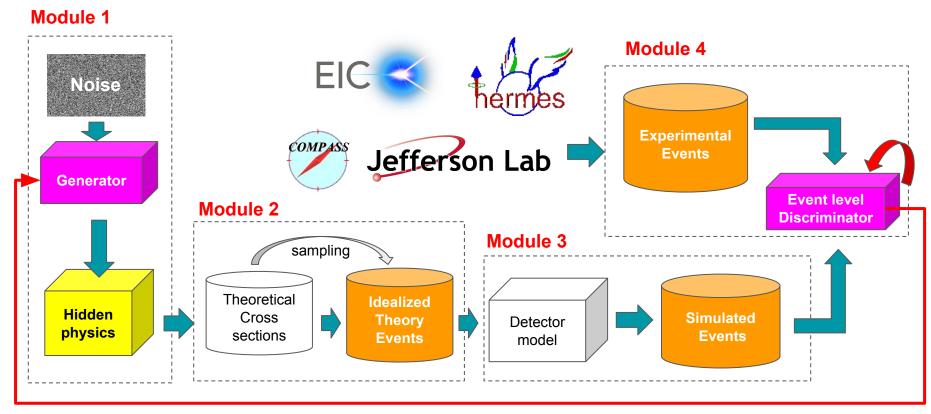


Event-based analysis



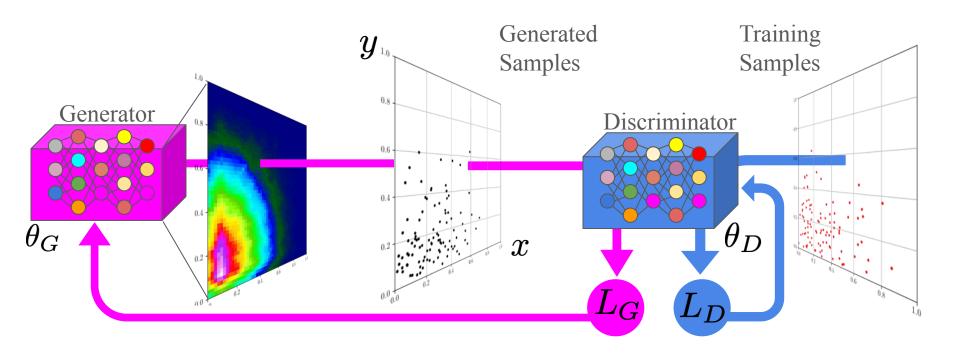
Optimize input physics

Gen Al approach via GANs

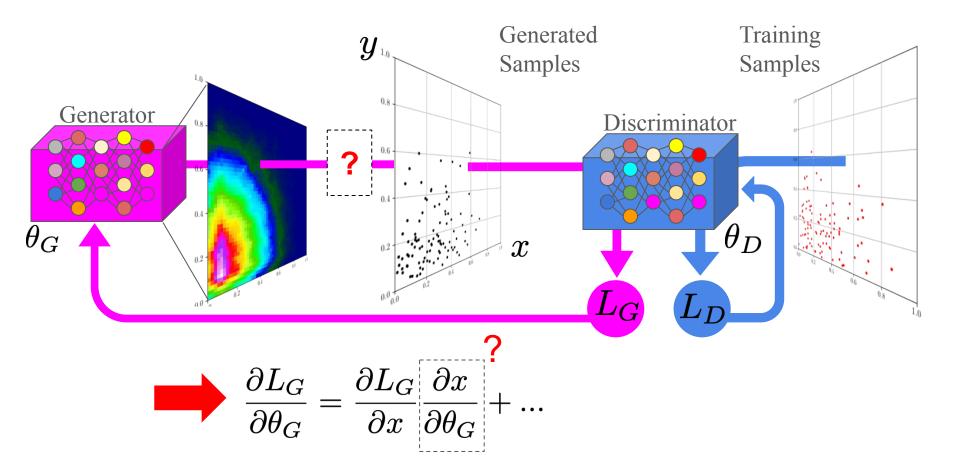


Optimize QCF parameters

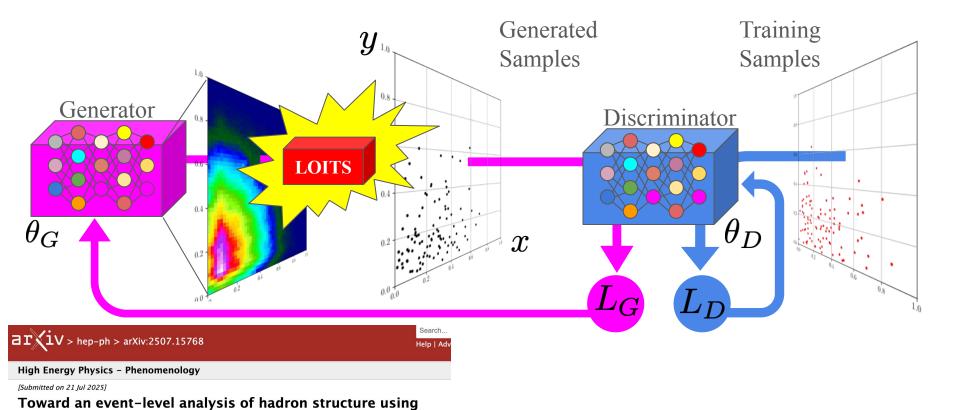
Simplified version of the problem



Simplified version of the problem



Simplified version of the problem



Kevin Braga, Markus Diefenthaler, Steven Goldenberg, Daniel Lersch, Yaohang Li, Jian-Wei Qiu, Kishansingh Rajput, Felix Ringer, Nobuo Sato, Malachi Schram

differential programming

Key idea: inverse transform sampling

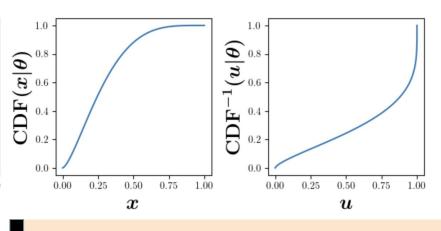
0.75

0.50

 \boldsymbol{x}

$$\begin{array}{c}
\text{CDF}(x,\theta) = \int_{0}^{x} dz \ p(z|\theta) \\
\downarrow \\
x_{\theta}(u) = \text{CDF}^{-1}(u,\theta) \\
u \sim \mathcal{U}[0,1]
\end{array}$$

$$\frac{\partial x_{\theta}}{\partial \theta_{i}} = \frac{\partial \text{CDF}^{-1}(u,\theta)}{\partial \theta_{i}} \\
= \frac{\partial \text{CDF}^{-1}(u,\theta)}{\partial \text{CDF}(x_{\theta},\theta)} \frac{\partial \text{CDF}(x_{\theta},\theta)}{\partial \theta_{i}} .$$



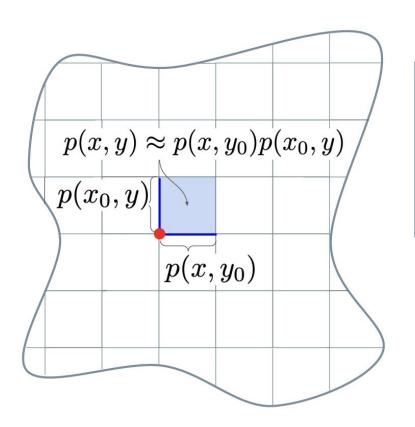
In general we don't know the inverse CDF

But we can interpolate the inverse once we evaluate CDFs on a grid in x

Interpolation is differentiable

How do we extend to n-dimensions?

Local Orthogonal Inverse Transform Sampling



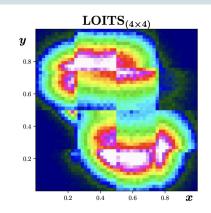
LOITS

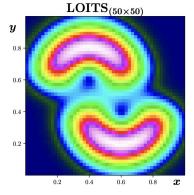
Approximate PDF using orthogonal segments

Pair the samples randomly from each of the segments

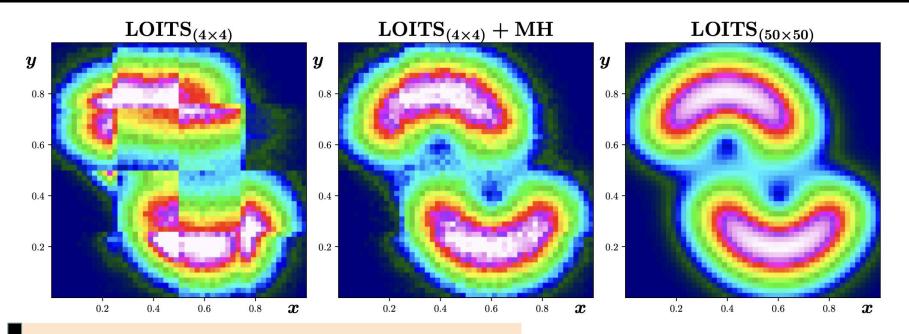
By construction the 2dim samples are differentiable

NOTE: LOITS is only an approximation





Correcting LOITS with Metropolis Hastings



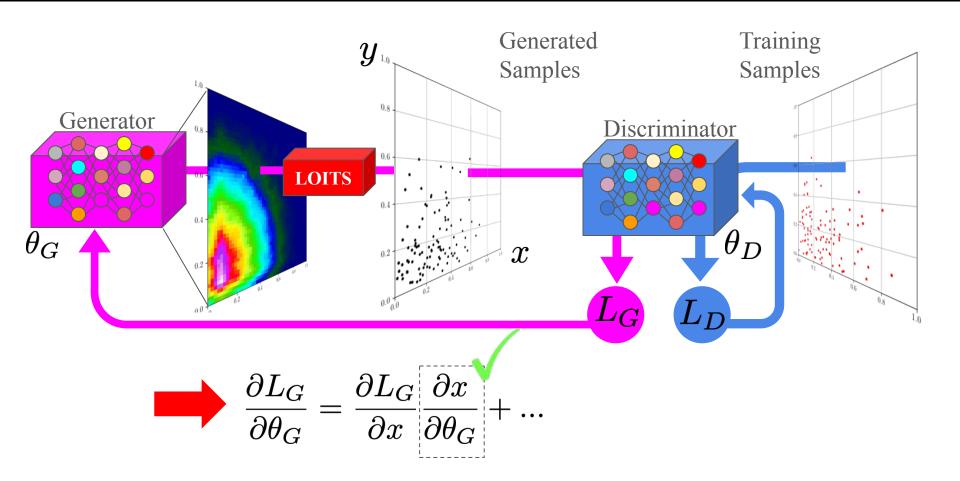
LOITS provides the PDF for each sample

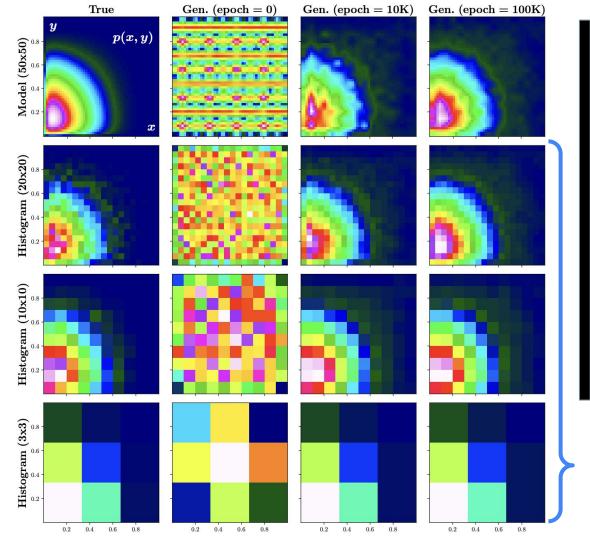
We can use LOITS as independent proposal

LOITS+MH = differentiable MCMC

$$A = \min \left[u, rac{p(x_{i+1}, y_{i+1} | heta)}{p(x_i, y_i | heta)} \cdot rac{p^*(x_i, y_i | heta)}{p^*(x_{i+1}, y_{i+1} | heta)}
ight]$$

Does it work?





Gen AI can learn the underlying density using the LOITS gradients

There are yet visible deviations from ground truth

Recombination of pixels indicates that the learned resolution is lower than the original pixel density

Pixel based approach enables to ask resolution of the reconstructed densities

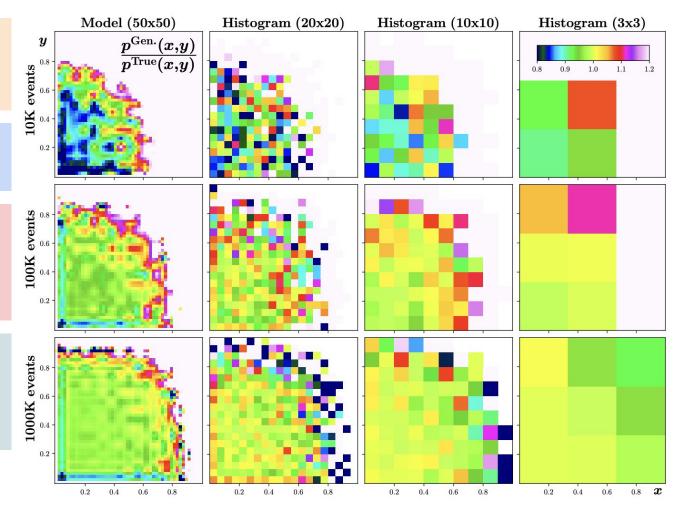
Post analysis: convert density into samples and histogram with different binning

Potential limiting factor includes: data size, model uncertainty, GAN training

We performed test on different data sizes

The results indicates that Gen AI can improve the resolution as the data size increases

The pixel approach provides new venues to quantify required luminosity to reconstruct hadron structure



Summary

Pixel based approach with Generative Al is very suited to reconstruct hadron structure (multidimensional densities).

On of the challenges is backpropagation. Many possibility might exist. We proposed LOITS and demonstrated its usage on a controlled example

LOITS is an approximation, but it can be corrected using Metropolis-Hasting algorithm

Image resolution for hadron structure is to our knowledge a new form of UQ

