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GPDs...

O

GPDs (x, &) & =0 bk GPDs (x,¢,t) > Gravitational form factors
s (x,

/ \ jdx X GPDS(x, f, t) - gr FFS(t)

> Mass and energy distributions

FFs(t) PDFs(x)
» Angular momentum distribution
" Tkt
by . » Pressure distribution

» Shear force distribution

From GPDs we learned:

> Impact parameter distributions
4o by) = FT(—A2) GPD(x,€ = 0,—A2) o Mass radius of the proton: Rp =0.55 fm

Kharzeev (PhysRevD.104.0540151)
» Charge and magnetization distributions: Polyakov, Schweitzer (2018) 1805.06596

o Pressure distribution of the proton

fdx GPD(x,é,t) » em FFs(t)

> Longitudinal momentum distribution: V. D. Burkert, L. Elouadrhir
&F. X. Girod 2018

https://doi.org/10.1038/541586-018-0060-z

GPD(x,& = 0,t = 0) = PDF(x)



https://arxiv.org/abs/1805.06596

That much information comes at"a cost!



The Challenges of GPD pheno
Parametrizing the GPDs

3 variables at fixed scale: x, &, t Two kinematic regions:
DGLAP and ERBL (or PDF or DA)
S
&E=1 r=§

DA

xHE Y frex S
PDF

2 - - t=A? 2. Ex £ x+8 /, \ x5

x:Average longitudinal momentum fraction L=\

&:Longitudinal momentum transfer fraction

t: Momentum transfer squared x=-1 0

Constraints on GPDs(x,§,t)

. . . . 4€2 M
o Kinematical limits on the variables : t € [— 00, 7 e ], z€[-1,1], €e€[-1,1]

e Continuity at z = £: Continuity between the two kinematic regions

1 n
e Polynomiality F,(&,t) E/ dxz" 'GPD(z,&,t) = Z EFF, i (t)
-1 k=0,even

e The forward limit: lim¢,; ,c GPD(z,¢,t) = PDF(x)

We need to parametrize a multi dimensional function of three variables, (x,¢,t), that is

defined in two Kinematical regions and must obey certain theoretical constraints



The Inverse Problem

GPD(x,,t)
X = —E X = f

The Challenges of GPD pheno



The Challenges of GPD pheno

The Inverse Problem

Experiment

GPD(x,,t)
X = —'f X = f




The Inverse Problem

Experiment
GPD(x,¢,t)
x == x=¢
1 Ve
" \ DVCS
| DVMP
T PDFs

Experimental data give
information only on x = +¢

* Neglecting the real parts of the CFFs and TFFs

The Challenges of GPD pheno



The Inverse Problem

Experiment
GPD(x,¢,t)
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Experimental data give
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The Challenges of GPD pheno

Why only x = +& ?

dopves o [H(E, 1))

H(E 1) / H(z, €, t)( ) dx

1
= PV/ H(:c f, +’i7r/ dz H(z,&,t)6(€ — x) .
X

GPD atx =¢



The Inverse Problem

Experiment
GPD(x,¢,t)
x ==& x=¢
\ DVCS
,, DVMP
_—— PDFs
— : X
-1 1

Experimental data give
information only on x = +¢

* Neglecting the real parts of the CFFs and TFFs

The Challenges of GPD pheno

Why only x = £¢& ?

dopves o [H(E, 1))

H(E 1) / H(z, g,t)( ) dx

1
= PV/ H( f, +i7r/ dz H(z,£,t)6(€ — x) .
i

GPD atx =¢

How fo take the GPDs off the x = *¢ line: Single diffractive hard exclusive processes. Qiu & Yu 2407.11304


https://arxiv.org/abs/2407.11304

The Challenges of GPD pheno

The Inverse Problem

Experiment Lattice
GPD(x,&,t) GPD(x,&,t)
x == 3 x=¢ x==§ 1 x=¢
\ ) /-
\ ,/'/ DVMP
\‘\\\ ‘:/,,:" //_ PDFS
-1 1 -1 1
Experimental data give Lattice has limitations on x = +¢
information only on x = +¢
quasi-GPDs Fourier Transform GPDs
/’d
Euclidean coordinate space Minkowski momentum space
k)—’/
Matching procedure
*Errors: - -

(x P’ ((1-x) PHZ ((§-x) P%)?



The Challenges of GPD pheno

The Inverse Problem THE GUMP PROJECT
Experiment Lattice Experiment+Lattice
GPD(x,¢,t) GPD(x,%,t) GPD(x,¢,t)
x=~¢ x=¢ x=-f x=¢ x=—¢ x=¢
[1 7 1 , 1 e

” \ DVCS
DVMP_I_

- PDFs

1 . . — X _’1 : 1 — X 1 2 1 — X
Experimental data give Lattice has limitations on x = +¢ : .
information only on x = +¢ Experimental data and lattice

calculations are complementary!

Combining all the possible constraints on GPDs, including both experimental and lattice calculations and
parametrizing the t dependence of the conformal moments of valence and sea distributions



Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch z)FC(&,1) ,

1
= Then the expansion coef fcients, FF (¢,t) are simply the moments of F(x,&,t): FE(&,t) = / dzC;(z)F(z,€,t) .
i
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Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch Ci(z)EF (€,1) ,

1
= Then the expansion coef fcients, Fl-C (&,t) are simply the moments of F(x,¢,t): F,-C(ﬁ,t) = / dzCi(z)F(z;&,t) .
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?
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Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch Ci(z)EF (€,1) ,

1
= Then the expansion coef fcients, Fl-C (&,t) are simply the moments of F(x,¢,t): F,-O(ﬁ,t) = / dzCi(z)F(z;&,t) .
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

» The answer is motivated by the GPD evolution

15



Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch )Ci(2)FE (€,1) ,

1
» Then the expansion coef fcients, Fl-c (¢,t) are simply the moments of F(x,&,t): EC(£,t) = / dzCiz)Flx:£.0) |
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

» The answer is motivated by the GPD evolution

‘ Evolution in x-space ‘ | Evolution in Conformal space |
Integro—differential (dif‘ﬁcult) Matrix multiplicative (easier)
d F(:L' &t Qz) O‘S(Q ) 1 dz’ (0 2 2 d Fn(§ t Q2) as(Qz) (0) QS(Qz) 2 (1)
16 by e ulgl it ) ) () — 2 2
L LV ) (@,6,1,Q%) + 0(a(@)?) + - (oD O, 4,@0) + (252) TS Ful6,,0%) +
y NLO and Beyond:
LO Evolution: The evolution is non — diagonal in conformal space,
The evolution is diagonal in conformal space, there is mixing of conformal moments

and there is no mixing of conformal moments.  pyt it is still easier than the coordinate space evolution

,i because it is matyrix multiplicative
\ n

¥ \
] 1
1 |
i 1

-" (©) '.
: " 0 0o ... O :
Fi 0 A0 o 5 Fi B Me s ) (B
5 s i : .
d Fa _ as(QQ) 0 0 (0) 0 F2 £ as(Qz) ? 0 752) Bt ’yén) F2 4.
dn@? | : | 2« L : 2 ' : - : :
Fa - oy | P 0 0 ... i) \F
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Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch z)FC(&,1) ,

1
= Then the expansion coef fcients, Fl-C (&,t) are simply the moments of F(x,¢,t): F,C(ﬁ,t) = / dzCi(z)F(z;&,t) .
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

= Gegenbauer polynomials are the best choice because they simplify the evolution equations.
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Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch )Ci(2)FE (€,1) ,
1

= Then the expansion coef fcients, FF (§,t) are simply the moments of F(x,&,t): FC(&t) = / dzC;(z)F(z,§,1) .
-1

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

= (Gegenbauer polynomials are the best choice because they simplify the evolution.

pj(x,§): Partial wave function Conformal

~moment
Flee) =3 ¢ 2L B+ 1_(_) 02< )}“ 1) for [2] <
\ —_—
\\‘ |
o r Gegenbauer
Normalization constant to \““ polynomials

match the Mellin moment \

in the forward limit Weight function of the

Gegenbauer polynomials 18



Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = Zpo Ci(z)EF (€,1) ,

1
= Then the expansion coef fcients, Fl-C (&,t) are simply the moments of F(x,¢,t): Ff(&,t) = / dzCi(z)F(z;&,t) .
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

= (Gegenbauer polynomials are the best choice because they simplify the evolution.

/F(fvaﬁat)

This series diverges!
Cannot represent GPDs

— Zg—j—

1 2T (5 +5)

T(3)T( +3)

- (@))el (e

j=0
X =‘—f 1 X = f
\ 7/
\ //
ERBL
7
,"DGLAP
\ 4
-1 1 X 19



Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = Zpo Ci(z)EF (€,1) ,

1
= Then the expansion coef fcients, Fl-C (&,t) are simply the moments of F(x,¢,t): Ff(&,t) = / dzCi(z)F(z;&,t) .
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

= (Gegenbauer polynomials are the best choice because they simplify the evolution.

- (@))el (e

x — - =g-=1 2jr(%+j)

This series diverges!

Cannot represent GPDs x =—¢& 51 x=¢
\ /7
\\ //
Analytic continuation
. ERBL , (umy : :
\ / g asymptotic behaviour)
\Y/DGLAP

X



Conformal wave expansion of GPDs

* (Consider we expand the GPD in terms of a complete set of polynomials: F(z,¢,t) = ch Ci(z)EF (€,1) ,

1
= Then the expansion coef fcients, Fl-C (&,t) are simply the moments of F(x,¢,t): F,-C(ﬁ,t) = / dzCi(z)F(z;&,t) .
=i

O There are infinitely many possible options for C;(x); which choice is the most suitable one for GPDs?

= (Gegenbauer polynomials are the best choice because they simplify the evolution.

= ()] (2) 7o

Analytic continuation
(Using asymptotic behaviour)

x — - =31 2jF(g+j)

This series diverges!
Cannot represent GPDs

Melii | 1 pa,8)
ellin Barnes Integral: F(z,&,t) = % | . djsin(wU+1])fj(€’t)
C—100

Muller and Schafer hep-ph/0509204 (2005) 2!



Parametrization of GPDs

Inverse conformal transform

_ 1 etioe . p'(maé.)
"2 /oo b n (el + 1)

F(:E,ﬁ,t) fj(€7t)
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Parametrization of GPDs

Inverse conformal transform

_ 1 etioe . p'(xaé.)
"2 /oo b n (el + 1)

F(:E,ﬁ,t) fj(€7t)

polynomiality

Jj+1
Fi€t) = & Fr(t) = Fiolt) +& Fia(t) +&* Fjalt) +---
—— ——

k=0 RaFj0 R4Fj0

23



Parametrization of GPDs
Inverse conformal transform

1 c+ioco )
2i e

Hpstat) = sin(7[j + 1])

‘Fj (67 t)
polynomiality

j+1

Fit) = & Fr(t) = Fiot) +& Fia(t) +&* Fjalt) +---
—— ~——

k=0

|

Fio(t)=No B(j +1— aog,1+ Bo)

\

R2Fj0 R4Fj0 Observed

exp. fall of f

j+1—ag /?_Aj

I ]+1—a0—at

Common ansatz for PDFs

f(z)

5 parameters in the semi

= Ny z7 (1 —z)Po

[ |
Regge Trajectory

(a/(t) = ao + alot
— forward limit

24



GUMP PAPERS

Generalized parton distributions through universal moment parameterization: zero
skewness case

Yuxun Guo (Maryland U.), Xiangdong Ji (Maryland U. and Unlisted, US), Kyle Shiells (Unlisted, US) (Jul 12, 2022)
Published in: JHEP 09 (2022) 215 - e-Print: 2207.05768 [hep-ph]

Generalized parton distributions through universal moment parameterization: non-zero

skewness case
Yuxun Guo (Maryland U. and LBNL, NSD), Xiangdong Ji (Maryland U.), M. Gabriel Santiago (Ctr. Nucl. Femtography,
Washington, DC), Kyle Shiells (Manitoba U.), Jinghong Yang (Maryland U.) (Feb 14, 2023)

Published in: JHEP 05 (2023) 150 « e-Print: 2302.07279 [hep-ph]

On convergence properties of GPD expansion through Mellin/conformal moments and
orthogonal polynomials

Hao-Cheng Zhang (Shandong U.), Xiangdong Ji (Maryland U.) (Aug 7, 2024)

Published in: Nucl.Phys.B 1010 (2025) 116762 - e-Print: 2408.04133 [hep-ph]

Small-z gluon GPD constrained from deeply virtual J/z/) production and gluon PDF through

universal-moment parameterization
Yuxun Guo (LBNL, NSD), Xiangdong Ji (Maryland U.), M. Gabriel Santiago (Unlisted, US and Maryland U.), Jinghong
Yang (Maryland U.), Hao-Cheng Zhang (Shandong U.) (Sep 25, 2024)

Analysis of t-dependent PDFs
which correspond to GPDs in
the § - 0 limit.

Extending the framework to
allow for the global analysis at
non-zero skewness.

Deriving an asymptotic condition
on the conformal moments of
GPDs to satisfy the boundary
condition at x=1

Gluon GPDs from DV] /P using
HERA data at NLO

Current project: Global analysis combining DVCS and DVMP + lattice data at NLO

Fatma Aslan, Yuxun Guo, Xiangdong Ji, M. Gabriel Santiago

25



DVCS and DVMP; complementary rather than redundant

DVCS

ep—epy
A lepton scatters of f the proton
by exchanging a virtual photon,

and in the final state,a real
photon is emitted

DVV, P
ep »e'p'M

A lepton scatters of f the proton

by exchanging a virtual photon,

and in the final state,a meson
is produced

Nl

U The gluons start contributing the hard part at NLO.

s ] ] U The gluons start contributing to the hard part at LO.
Their impact at LO arises only through evolution.

LO

NLO

Quark GPD

Gluon GPD

There is no gluon contribution at LO!

P

+

—

O Contributions from vector GPDs H & E and

axial vector GPDs H & E

Lo

NLO

Quark GPD

Gluon GPD

v v
¢"/
+ ..
S

v Y
+ o
e N

v, v
o
+ ..

S RN

Q Vector GPDs H and E contribute to vector meson
production.

26



Fitting the DVp, P cross section using HERA data

Comparison of fitted do,/dt at different Q?'s to the data

--- Fitat Q*> =7.8 GeV? .
* . --- Fitat Q2 =11.9 GeV? o We are maklng an L\T
TTELLT --- FitatQ?=17.4 GeV? H H H
. ey e separa’rlon' of the differential
100 ez O $ o'=6o cross section
~~~~~~ $ - L I Q=78
AL i Bl 2 = 0
s e . ok S § 02=115
_ ”I\i.\\ “\L\ F ~~~~~~~ I 0?=119 o o O'f
‘% Kl ~I\£~\ e £ f ~~~~~~~~~ I ® 0l=174 Otot — OT + E0L R= 0
o | 7 Tt e I ?=197 0-p
g 109 I\\? ~~~~~~~~~~ § 02=33 T
= i o A T I I ol=a1
I e T e s ™
““““ Bt # " Td
w] T I o We are using only HERA data
~~~~~~~~~~~~ 1 A= ZEUS for DVMP
\\\\\\\\\ f 0=H1
0.0 0.‘1 0:2 013 0.‘4 0.‘5

It] (GeV?)



The Real and Imaginary parts of the transition

NLO Hrre(t= 0,0 = 2 GeV)

Singlet=(u + @) + (d + d)

form factor at NLO Non-singlet= -(u + ) + (d + d)

NLO Hrre(t=0,Q = 4 GeV)

- g
— S
NS
—— Im(solid)
—=-- Re (dashed)

TFF(xg, t, Q)

T
102

TFF = Hard part @ Evolution @ GPD (x,¢)
perturbative perturbative
(LO+NLO+...) (LO+NLO+...)

— 9
— s
NS
— Im(solid)
8 —-=-=- Re (dashed)
£
w
i~
16-4 16—3 16-2
XB
TFF = Hard part ® GPD (x,¢)
perturbative
(LO+NLO...)
4 / v \ v I />
; / ¢/'/
+ .. + .
SRR, S p
v A

NG

~

At LO, real part is negligibly small:

)dx = PV/_lldz

~~

H@&b) .

7 / dzx H(z,£,t)6(€ —x) .

-1

H(E ) = /_ H(6 t)(

E—x—ie

H(z,z,t)

This is also the case at NLO

/




TFF(xg, t, Q)

Imaginary part of the transition form factor at LO and NLO Singlet=(u + ) + (d + d)
Non-singlet= -(u + @) + (d + d)

Im[H7eel(t =0,0 =2 GeV) Im[H7e](t =0,0 =4 GeV)
—0g 1 i
— s — s
NS NS
— LO(solid) — LO(solid)
=== NLO (dashed) 6 === NLO (dashed)
-
@
X
i
~
e LN 0
10‘-2 1074 1073 1ol-2

Significant contribution from NLO!



THE GUMP PROJECT

Challenges of GPD Pheno The GUMP project

Parametrization Working with conformal moments of GPDs
(easy evolution, polynomiality, ...)

Inverse problem Combining the experimental and lattice data

DVpP at NLO o The real part of the TFFs are negligible also at NLO
o Significant contributions from NLO fo the imaginary part of the TFFs
> Global analysis combining DVCS and DVMP + lattice data

Outlook

Implementation of Next-to-leading order NRQCD factorization of Jpsi production and photo-productions
Bayesian and ML analysis for GUMP/GPD

String-based parameterization and phenomenological studies
phi-production and strange quark distributions

Implement large-xi and threshold production into GPD analysis
Next-to-leading order refactorization of Deeply virtual J/psi Production
EIC simulations with GUMP

Kinematic higher twist effects in DVCS and DVMP

THANK YOU!

VVVVVVYVYYYVYY



BACK UP...



The GPDs that contribute to DVCS and DVMP

DVCS: H,E, H, E (Jlab+HERA data)
DVMP: Depends on the final state meson (HERA data)

DVMP HERA data: ¢, ] /9, p
Dv PP fof DV V P woWER”
Good QOS
HERM date  Mesouns: m, K, n;7’ g\"‘o“‘f:\; Mesons: p,w, ¢,] /Y
No - 0

., J/Y=cC ¢>—>ss p—>uﬁ—dcf\/

/

We did not include
the s flavor in
the code yet

Leading twist GPDs+H, E



The GPDs that contribute to DVCS and DVMP

DVCS: H,E, H, E (Jlab+HERA data)
DVMP: Depends on the final state meson (HERA data)

DVMP HERA data: ¢, J /Y, p
DV PP DVp P
N HERP da'e  Mesens: w, K91’ //\4
o -
Leading twist GPDs+H, E DVp, P DV pr P
or ;P — p]P) or = o(yrP — prP)
Leading twist GPDs : ﬂo factorization (higher twist)
on-
C\‘\C aSSUmpt\ meso\’\ v
The SE7 - ot the on dotor do; dor _ 9L
\arizat\© ne pRot =€ + R=
OO\\O\NS gt O dt dt dt or
fo T
,\{’\L > VL7 datot
dO‘L dt

S Ge)



EVOLUTION

The operator E;; governing the perturbative evolution of the singlet vector GPDs - Representative picture

Next to leading order structure

Leading order structure

Singlet evolution

T HR )
=E; ) >
) e ( HO (€, t,12)

~

) S Epaoif) = Y

>N
( H] ({-ata “2)
ab=+

HY (€,t,1%)

Non-Singlet evolution
S, (0
NS, (0)

Reduce the matrix-valued quantities in the singlet evolution
J

to scalar values associated with quark contributions

227](0)

Y

NS

’Y(l) =

b =G b pel
,YEE(O) ’YZG(O) Y11 @ Y11 @ Y12 @ Y12 W
11 1 0 0 n(1)  _GG(1) Gx(1) GG (-]
,),112(0) '71Gl (0) Y11 Y11 Y12 Y12
LI50)560) 0 R =
0 G¥(0) GG(0) 0 cee 72022(1) 72020(1)
V22 Y22
20 6(0) Tag gy
0 0 7:5,2(0) 7‘2’5"@@) 0 0 ¢z e
V33 V33 Tss s

a as a a =
60 P36+ 252 (A, o)+ B 1 0) ) + 00 |

EE’.Y](‘I)

as(p)
as (ko)

A

]_%



