Deeply Virtual Exclusive Processes

Towards improved hadron femtography with hard exclusive reactions, edition IV, Jefferson Lab, 2025

Andrey Kim

University of Connecticut (For the CLAS Collaboration)

July 29, 2025

3-Dimensional Imaging of Quarks and Gluons

Generalized Parton Distributions (GPDs)

$$W_{\Gamma}(\mathbf{r},k) = \frac{1}{2M_N} \int \frac{d^3\mathbf{q}}{(2\pi)^3} e^{-i\mathbf{q}\cdot\mathbf{r}} \left\langle \mathbf{q}/2 \left| \hat{\mathcal{W}}_{\Gamma}(0,k) \right| - \mathbf{q}/2 \right\rangle$$

S. Liuti et al., Phys. Rev. D 84, 034007 (2011) (GGL)

P. Kroll et al., Eur. Phys. J. A 47, 112 (2011) (GK)

 \bar{E}_T

 \widetilde{E}_T

 H_T, H_T

Integrate over transverse momentum space

Generalized Parton Distributions (GPD)

3-D nucleon images in the transverse coordinate and longitudinal momentum space

quark pol.

L

 \widetilde{H}

 \widetilde{E}

N/qnucleon pol HLE

U

$$\bar{E}_T = 2\tilde{H}_T + E_T$$

Study GPDs: Deeply Exclusive Processes

→ Access to Generalized Parton Distributions (GPDs)

Physics Content of GPDs: From GPDs and CFFs to the D-term

GPDs can not be directly measured with the DVCS and DVMP processes

DVCS Process: Observables are the Compton-FFs (CFF)

→ Complex integrals over the x-dependence of the GPDs

$$\operatorname{Re}\mathcal{H}(\xi,t) + i\operatorname{Im}\mathcal{H}(\xi,t) = \sum_{q} e_{q}^{2} \int dx \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] H^{q}(x,\xi,t)$$
CFF
CFF
CFF
CFF
GPD

GPD, Compton-FFs and the pressure within the nucleon:

• GPDs provide indirect access to mechanical properties $\int xH(x,\xi,t)\mathrm{d}x = M_2(t) + \frac{4}{5}\xi^2d_1(t)$ of the nucleon \rightarrow gravitational form factors

X. D. Ji, PR**D 55**, 7114-7125 (1997)M. Polyakov, PL**B 555**, 57-62 (2016)

Real- and imaginary part of the Compton-FF # follow the dispersion relation:

$$\operatorname{Re}\mathcal{H}(\xi,t) \propto D(t) + \frac{2}{\pi} \mathcal{P} \int dx \frac{x \operatorname{Im}\mathcal{H}(x,t)}{\xi^2 - x^2}$$

M. Diehl, D. Y. Ivanov, Eur. Phys. J. C 2007, 52, 919

Deeply Virtual Meson Production in the GPD regime

	Meson	Flavor
	π^+	$\Delta u - \Delta d$
$\mathcal{H}_{\boldsymbol{T}}, \mathcal{E}_{\boldsymbol{T}}$	π ⁰	$2\Delta u + \Delta d$
\mathcal{H}, \mathcal{E}	η	$2\Delta u - \Delta d + 2\Delta s$
\mathcal{H},\mathcal{E}	$ ho^+$	u-d
	$ ho^{0}$	2u + d
	ω	2u — d
	ϕ	g

- DVMP enables Flavour decomposition of GPDs.
- The small-size regime: the production of $q\bar{q}$ pair with sizes << hadronic size dominates.
 - QCD factorization and GPD extraction assume that this regime is attained.

CEBAF Large Acceptance Spectrometer (CLAS12) in Hall B

https://www.jlab.org/Hall-B/clas12-web/

V. Burkert et al., Nucl. Instrum. Meth. A 959 (2020) 163419

- CLAS12: 10^{35} cm⁻²sec⁻¹ luminosity, nearly 4π acceptance, 0.05 GeV² < Q² < 10.0 GeV² coverage over photon virtuality.
- Began data taking in Spring 2018 many "run periods" now available
- Data from Fall 2018 10.6 GeV electron beam, longitudinally polarized beam, liquid H₂ target.

Inclusive Electron Scattering Kinematic Coverage with CLAS12

Orange: CLAS12

Green: CLAS6

Blue: Hall C

Preliminary Cross Sections vs. W (GeV)

Red: CLAS12

Blue: ANL-Osaka Model

Green: CTEQ-6 PDFs

Accepted to PRC

W (GeV)

Observables of the DVCS process

How can we measure the CFFs in the DVCS process?

1. Cross-section $\sigma^{ep\gamma}(x,Q^2,t,\phi) \propto Re\{\mathcal{H}\}$

2. Beam-Spin Asymmetry

BSA
$$(x, Q^2, t, \phi) = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-}$$

V.D. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557, 396 (2018)

From the D-term to the pressure distribution

$$\operatorname{Re}\mathcal{H}(\xi,t) \propto D(t) + \frac{2}{\pi} \mathcal{P} \int dx \frac{x \operatorname{Im}\mathcal{H}(x,t)}{\xi^2 - x^2}$$

V.D. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557, 396 (2018)

The pressure distribution:
$$p(r) = \frac{1}{6m_{\rm p}} \int \frac{{\rm d}^3\Delta}{\left(2\pi\right)^3} t \frac{D(t)}{D(t)} e^{-i\Delta t}$$

K. Goeke et al., Phys. Rev. D 75, 094021 (2007)

with $t = -\Delta^2$

Pressure inside the proton

V.D. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557, 396 (2018)

- Positive maximal pressure of 10³⁵ Pa in the center at r = 0 fm
- → Highest known pressure in the universe
- → Resulting forces away from the center avoid a collaps of the quark matter
- Negative pressure in the outer areas of the proton, for r > 0,6 fm
 - → Forces towards the center stabilize the proton

DVMP (π^0) Differential Cross Section

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

Pseudoscalar meson electroproduction with CLAS12

GK model

JML model

E_T is related to the proton's anomalous tensor magnetic moment.

 H_{τ} is related to the proton's tensor charge.

$$\kappa_T^u = \int dx \bar{E}_T^u(x, \xi, t = 0) \quad \delta_T^u = \int dx H_T^u(x, \xi, t = 0)$$

$$\kappa_T^d = \int dx \bar{E}_T^d(x, \xi, t = 0) \quad \delta_T^d = \int dx H_T^d(x, \xi, t = 0)$$

Transverse densities for u and d quarks in the proton (after global fit)

• \bar{E}_T is related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon

V. Kubarovsky et al.

 \bar{E}_T is similar to Boer Mulders TMD function in SIDIS.

The fit results agree with the large-N_c limit analysis by P. Schweitzer and C. Weiss *Phys.Rev.C* 94 (2016) 4, 045202

GPD parameterization used in GK model can be improved through global fits using existing Hall A and Hall B data

Exclusive vector meson ϱ^0 production with CLAS12

Exclusive vector meson ρ^0 production is sensitive to

$$\mathcal{H}, \mathcal{E}$$

$$\begin{split} \frac{d^4\sigma}{dQ^2\;dx_B\;dt\;d\Phi} &= \Gamma(Q^2,x_B,E) \\ &\frac{1}{2\pi} \left\{ \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right. \\ &+ \epsilon \frac{d\sigma_{TT}}{dt} \cos(2\Phi) + \sqrt{2\left(\epsilon+1\right)} \frac{d\sigma_{LT}}{dt} \cos(\Phi) \\ &+ \lambda \sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT'}}{dt} \sin(\Phi) \left. \right\} \end{split}$$

where λ is the helicity state of the incident electron beam

$$BSA = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} \sim \sigma_{LT'} \sim r_{00}^{8} \sim \operatorname{Im}\left[\langle H_{T}\rangle^{*}\langle E\rangle + \langle \bar{E}_{T}\rangle^{*}\langle H\rangle\right]$$

16

Exclusive ho^0 production with CLAS12: fitting

simultaneous fit of both helicities

$$rac{dN}{dM_{\pi\pi}}=BW_{
ho^0}(M_{\pi\pi})+BW_{f_2}(M_{\pi\pi})+BG_{\pi}$$

examples of the invariant mass fits

Exclusive ho^0 production with CLAS12: 1-D binning

DIS cuts: $Q^2>2~{
m GeV}^2$ and $W>2~{
m GeV}$

- 5 $\{-t\}$ bins
- ullet 9 equidistant $\{\phi\}$ bins in each $\{-t\}$ bin

In total: 45 $\{-t,\phi\}$ bins

Exclusive ho^0 production with CLAS12: 3-D binning

SDMEs from Exclusive ρ production with CLAS12

• 23 SDME elements are extract using the MLM:

$$-\ln L(\mathcal{R}) = -\sum_{i=1}^{N} \ln \frac{\mathcal{W}^{U+L}(\mathcal{R}; \Phi_i, \phi_i, \cos \Theta_i)}{\widetilde{\mathcal{N}}(\mathcal{R})}$$

15 unpolarized SDMEs

$$\begin{split} W^{U}(\Phi,\phi,\cos(\Theta)) &= \frac{3}{8\pi^{2}}(\frac{1}{2}(1-r_{00}^{04}) + \frac{1}{2}(3r_{00}^{04}-1)\cos^{2}(\Theta) \\ &-\sqrt{2}Rer_{10}^{04}\sin(2\Theta)\cos(\phi) - r_{1-1}^{04}\sin^{2}(\Theta)\cos(2\phi) \\ &-\epsilon\cos(2\Phi)[r_{11}^{1}\sin^{2}(\Theta) + r_{00}^{1}\cos^{2}(\Theta) \\ &-2Re\{r_{10}^{1}\}\sin(2\Theta)\cos(\phi) - r_{1-1}^{1}\sin^{2}(\Theta)\cos(2\phi)] \\ &-\epsilon\sin(2\Phi)[\sqrt{2}Im\{r_{10}^{2}\}\sin(2\Theta)\sin(\phi) \\ &+Im\{r_{1-1}^{2}\}\sin^{2}(\Theta)\sin(2\phi)] \\ &\sqrt{2\epsilon(1+\epsilon)}\cos(\Phi)[r_{11}^{5}\sin^{2}(\Theta) + r_{00}^{5}\cos^{2}(\Theta) \\ &-\sqrt{2}Re\{r_{10}^{5}\}\sin(2\Theta)\cos(\phi) - r_{1-1}^{5}\sin^{2}(\Theta)\cos(2\phi)] \\ &+\sqrt{2\epsilon(1+\epsilon)}\sin(\Phi)[\sqrt{2}Im\{r_{10}^{6}\}\sin(2\Theta)\sin(\phi) \\ &+Im\{r_{1-1}^{6}\}\sin^{2}(\Theta)\sin(\phi)]) \end{split}$$

8 polarized SDMEs

$$\begin{split} W^L(\Phi,\phi,\cos(\Theta)) &= \frac{3}{8\pi^2} (\sqrt{1-\epsilon^2} [\sqrt{2} Im\{r_{10}^3\} \sin(2\Theta) \sin(\phi) \\ &+ Im\{r_{1-1}^3\} \sin^2(\Theta) \sin(2\phi)] \\ &+ \sqrt{2\epsilon(1+\epsilon)} \cos(\Phi) [\sqrt{2} Im\{r_{10}^7 \sin(2\Theta) \sin(\phi) \\ &+ Im\{r_{1-1}^7\} \sin^2(\Theta) \sin(2\phi)] \\ &+ \sqrt{2\epsilon(1+\epsilon)} \sin(\Phi) [r_{11}^8 \sin^2(\Theta) + r_{00}^8 \cos^2(\Theta) \\ &- \sqrt{2} Re\{r_{10}^8\} \sin(2\Theta) \cos(\phi) + r_{1-1}^8 \sin^2(\Theta) \cos(2\phi)]) \end{split}$$

From the ground state nucleon to resonances

How does the excitation affect the 3D structure of the Nucleon?

☐ Pressure distributions, tensor charge, ... of resonances?

Traditional way: Study of transition form factors (**2D picture** of transv. position)

3D picture of the exitation process: Encoded in transition GPDs

Simplest case: N→∆ transition → 16 transition GPDs

- P. Kroll and K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023).
 K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023).
- 8 helicity non-flip transition GPDs (twist 2)
 - Related to the Jones-Scardon and Adler EM FF for the N \rightarrow Δ transition
- 8 helicity flip transition GPDs (transversity)

Non-diagonal DVCS / DVMP

non-diagonal DVCS

Q^2 e' $N \rightarrow N^*$ DVCS W^2 $x+\xi$ $x-\xi$ trans. GPD N^* m

non-diagonal DVMP

Access to the helicity non-flip transition GPDs + Access to the helicity flip transition GPDs

W > 2 GeV

Factorisation expected for: -t / Q² << 1, x_B fixed and Q² > $M_{N^*}^2$

$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$

Factorization expected for:

-t / $Q^2 << 1$, x_B fixed, and $Q^2 > M_{\Delta}^2$

Provides access to p- Δ transition GPDs

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

$$I_{7} = +3/2$$

The $p\pi^+$ final state can **only** be populated by Δ -resonances -> Large gap between Δ (1232) and higher resonances

Results

S. Diehl et al. (CLAS collab.), Phys. Rev. Lett. 131, 021901 (2023)

S. Diehl et al. (CLAS collab.)
Phys. Lett. B 839, 137761 (2023)
A. Kim et al. (CLAS collab.)
Phys. Lett. B 849, 138459 (2024)

Non-diagonal DVCS / DVMP

factorization expected for: $-t/Q^2$ small, $Q^2 > M_{N^*}^2 \times_B$ fixed

N-> $\Delta(1232)$ transition GPDs: 8 twist-2 GPDs: 4 unpolarized, 4 polarized. K.

Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

$N \rightarrow N^*$ DVCS Processes: $ep \rightarrow e'N^*\gamma \rightarrow e'n\pi^+\gamma$

From JLab 11 GeV to JLab 22 GeV to COMPASS to EIC

EIC: Extending the kinematic regime to the sea-quark and gluon sector.

Conclusion and Outlook

- 1. Deeply virtual exclusive processes (DVEP) will help us to map the spatial distributions of quarks and gluons in the nucleon and potentially also in baryon resonances.
- 2. JLab CLAS12 has a comprehensive program in deeply virtual exclusive processes.
- 3. One essential point concerns the approach to the small-size regime, where the production of qq pair with sizes << hadronic size dominates. QCD factorization and GPD extraction assume that this regime is attained (!).
- 4. At present 12 GeV kinematics, whether we attain this regime is under investigation.
- 5. EIC science program will profoundly impact our understanding of the most fundamental inner structure of the matter that builds us all.

