EXCLUSIVE J/ψ WITH GLUEX

Quantum Chromodynamics

- Quantum Chromodynamics (QCD)- theory of quarks and gluons.
- Predicts rich spectrum of hadrons, groups of quarks bound by gluons
- The proton
 - One of the building blocks of matter
 - A baryon with up-up-down quark content.
- Charmonium
 - charm and anticharm quark pair
 - J/ψ first excited state $(n^{2S+1}L_J=1^3S_1)$

Proton

Charmonium- J/ψ

Proton Charge and Mass Radius

- Proton Charge Radius
 - Electron/muon scattering experiments
 - Electromagnetic form factors
- Proton Mass- dominated by distribution of gluons
- Proton Mass Radius
 - Electron/muon scattering can't probe gluonic contributions
- How can J/ψ help?
 - Charm quarks predicted to interact via gluonic exchange with proton
 - Could probe into the gluonic distribution in the proton
 - Gluonic interaction is suggested to dominate at the J/ψ threshold

Assumptions of Gluonic Interaction

- Vector Meson Dominance
 - Model describes photon-hadron interactions
 - Suggests photons oscillate into vector meson $(\rho, \omega, \phi, J/\psi)$ that interact with proton
 - Possibly breaks down for heavier quarks
- Factorization
 - Assumes gluonic interaction can factorize into an upper, "hard" part and a lower, "soft" part
 - "Hard" part- described by QCD
 - "Soft" part- described by generalized parton distribution functions (GPDs)
- Dominant interaction at Threshold
 - Assumes no s-channel or loop contributions

Models in J/ψ Photoproduction Dynamics

JPAC arxiv:2305.01449 (2023)

- Kharzeev et al. (PRD 104 (5 Sept. 2021), p. 054015) calculated proton mass radius from slope of $\frac{d\sigma(\gamma p \to J/\psi p)}{d(-t)}$
 - assumed an elastic interaction between the J/ψ and the proton
- However, open-charm intermediate states could contribute
 - Violate assumptions of gluonic exchange

Thomas Jefferson National Accelerator Facility

- A National Laboratory located in Newport News, Virginia
- Hosts the Continuous Electron Beam Accelerator Facility (CEBAF)
- GlueX located in Hall D
 - Receives 12 GeV electrons after 5.5 turns through CEBAF
 - Electron beam hits a diamond radiator
 - Producing a linearly polarized beam of photons via Bremsstrahlung radiation

The GlueX Spectrometer

- Photon beam incident onto a fixed liquid hydrogen target
- The spectrometer,
 - Near 4π coverage
 - Composed of several sub-detectors and a solenoid magnet
 - Can detect a wide range of neutral and charged particles
- Tracking:
 - $\frac{\sigma_p}{\sim} \sim 1-5\%$
- Calorimetry: $\frac{\sigma_E}{E} \sim \frac{6\%}{\sqrt{E}} \oplus 4.5\%$

GlueX NIM-NIM A 987 (2021) 164807

Exclusive $\gamma p \to J/\psi p \to e^+e^-p$ at GlueX

- Exclusivity of the reaction: kinematic fit
- 13 MeV mass resolution
- J/ ψ yields extracted from fits of distributions 2270 \pm 58 J/ ψ 's
- BH(1.2 2.5 GeV) used for normalization

Threshold region coverage

- Event-by-event weighting by luminosity
- Dots mean energy and t-value for the corresponding bin
- Results reported at mean energy for corresponding slice
- Deviations due to bin averaging included in the systematic errors

GlueX results: $J/\psi \rightarrow e^+e^-$ total and differential cross-sections

- Possible structure at $\sigma(8.6 9.6 GeV)$
 - 2.6σ statistical significance of the two "dip" points
 - 1.3σ using look-elsewhere method

- $\frac{d\sigma}{dt}$ exponentially falling with t-dependence
- Enhancement of $\frac{d\sigma}{dt}$ at high t (for the lowest energy slice), indicates contribution beyond gluon exchange

Other reaction mechanisms: open-charm, 5q exchange

Du et al. EPJ C80 (2020)

Strakovsky et al. arxiv:2304.04924 (2023)

Gluon or charm exchange: JPAC interpretation

Phenomenological model based on schannel PW expansion ($I \le 3$):

- (1C) $J/\psi p$ interaction
- (2C) $J/\psi p$ and $\overline{D}^*\Lambda_C$
- (3C-NR) $J/\psi p$, $\overline{D}^*\Lambda_C$, $\overline{D}\Lambda_C$ (non-resonant solution)
- (3C-R) $J/\psi p$, $\overline{D}^*\Lambda_C$, $\overline{D}\Lambda_C$ (resonant solution)

No stat. significant preference:

- 9 GeV structure requires sizable contribution from open charm
- Severe violation of VMD and factorization not excluded
- s-channel resonance not excluded
- t-enhancement indicates s-channel contribution: due to proximity to threshold or open-charm exchange

Why $J/\psi \rightarrow \mu^{+}\mu^{-}$ at GlueX?

- Branching ratios are the same for both channels
 - Increase our J/ψ statistics
- Large (~20%) normalization uncertainty in $J/\psi \rightarrow e^+e^-$ cross section
 - Primarily from the relative measurement to Bethe-Heitler process
- $J/\psi \rightarrow \mu^+ \mu$
 - Absolute cross section measurement
 - Could help reduce this normalization uncertainty
 - Detector response to the electrons and muons is different
 - Can be used as a cross check for the behavior seen in the total and differential cross sections

Exclusive $\gamma p \to J/\psi p \to \mu^+\mu^- p$ at GlueX

- Exclusivity of the reaction: kinematic fit-forces exclusivity and p^{μ} conservation
- Use energy deposition in calorimeters for particle identification
- Use opening angle between muons to remove large baryon background
 - Pions misidentified as muons → one pion at greater angle in baryon decays
- Mass distribution- Observed yield after selections
 - No efficiency correction

Comparing e^+e^- and $\mu^+\mu^-$ cross sections

- Cross section with statistical and preliminary systematic uncertainties
 - Large systematic uncertainties in $\mu^+\mu^-$ cross section
- Measurements are consistent in general shape
 - Normalization uncertainty in $\mu^+\mu^-$ cross section

Comparing e^+e^- and $\mu^+\mu^-$ differntial cross sections

- Just statistical uncertainty for $\mu^+\mu^-$
 - Systematic uncertainties not included but contributes greatly to uncertainties
- See a flattening at low beam energy and high-t in both channels
- Normalization uncertainty in $\mu^+\mu^-$ cross section

Future at GlueX- Approved Phase-III Proposal

Run Period	PAC Days	J/ψ Yield
All Phase I	120	2,180
2020 Phase II	67.5	1,780
2023 Phase II	28.1	741
2024-2025 Phase II (planned)	109	2,874
This Proposal	200	11,271
Projected Total		18,846

Proposal # PR12-24-006 for PAC52

- Currently in Phase-II
 - Should triple the e^+e^- published statistics (Just Phase-I)
 - Doubles the $\mu^+\mu^-$ statistics (Phase-I + 2020 Phase-II)
- Approved for Phase-III
 - Twice the Phase-I and Phase-II photon beam intensity
 - Should J/ψ double the combined Phase-I and Phase-II statistics
 - Predicts a high likelihood that added GlueX-III data could rule out the 1C model at the 5σ level

Summary

- Summary:
 - Successfully calculated a total and differential cross section of the reaction γp → I/ψp both leptonic decays
 - Possible dip structure at $\sigma(8.6 9.6 GeV)$ in e^+e^- channel
 - Flattening of diff. cross section at high-t in both channels
 - Helps distinguish between J/ψ photoproduction models
- Future Work:
 - Large increase in data over next few years
 - Phase-III predicted to rule out the 1C ($J/\psi p$ interaction) model at the 5σ level

GlueX Acknowledgements:

http://gluex.org/thanks

Back up slides

Previous Measurements: SLAC and Cornell

- SLAC and Cornell- First J/ψ photoproduction measurements at energies near threshold
- Both experiments predominantly used nuclear targets
- Both experiments had only inclusive measurements since they did not detect the recoiling proton
 - Because of this, they both have access to a limited range of Mandlestam-t values, which leads to greater systematic uncertainties in their measurement.
- These measurements were also done at least 1.5 GeV above the J/ψ threshold.

Brodsky et al.: PLB 498 (2001), pp. 23–28

Previous Measurements: GlueX Collaboration (1st Publication)

- GlueX- published measurements of the $\gamma p \to J/\psi p$ cross-section through the decay of $J/\psi \to e^+ e^-$ Total integrated luminosity $68pb^{-1}$ at or above the J/ψ threshold
- Relative cross-section measurement to the Bethe-Heitler process
 - This contributes significantly to a large (~27%) systematic normalization uncertainty
- No evidence for P_c⁺ states that were found by LHCb

GlueX: PRL 123 (7 Aug. 2019), p. 072001

GlueX: PRL 123 (7 Aug. 2019), p. 072001

Data Used and Goal of Event Selections

- Proposed exclusive reaction:
 - $\gamma p \rightarrow J/\psi p \rightarrow \mu^+\mu^- p$
 - Phase-I data: taken from 2017-2018
 - a luminosity of 304 pb⁻¹ above the J/ψ threshold
 - Subset of Phase-II data: taken in 2020
 - a luminosity of 321 pb⁻¹ above the J/ψ threshold

Event Selection	Importance of Selection	
$E_{BCAL,total} > 1.2 \text{ GeV or } E_{BCAL,total} + 0.5 * E_{FCAL,total} > 1 \text{ GeV}$	Physics Trigger	
Beam Energy > 8.2 GeV	Removes events below J/ψ threshold	
$\chi^2/dof < 5$	Requires exclusivity and conservation of p^μ	
Energy/Path Length in BCAL of μ $^{\pm}$ < .012 GeV/cm	Distinguishes between muons and pions	
Energy in FCAL of μ $^{\pm}$ < 1 GeV		
$ hetaig(\mu^\pmig) < 12.5^\circ$ and $ heta(\mu^\pm) < 40^\circ$	Removes pion events formed by baryon decay	

Event Selections- χ^2/dof

- Used to determine the exclusivety of an event
- In the J/ψ region
 - A long tail in data, probably from events with extra, undetected particles
- The red line signifies my selection
 - Did some studies to optimize the chosen selection

Event Selections- BCAL and FCAL selections New MC

- With corrections to the MC simulations, much better matching in J/ψ region
 - Differences mostly from large pion background
 - Make loose selections to mitigate differences
- Keep events to the left of the red line

New θ cut- Theta Distributions

- Comparing data to MC
 - Muons tend to have smaller angles
- Pions from baryon decay
 - One pion has large θ in the lab frame
 - Expect the large angles to be from misidentified pions
 - For instance:

•
$$\gamma p \rightarrow \Delta^{++} \pi^{-} \rightarrow (\pi^{+} p) \pi^{-}$$

•
$$\gamma p \rightarrow \Delta^0 \pi^+ \rightarrow (\pi^- p) \pi^+$$

•
$$\gamma p \rightarrow N^* \pi^+ \rightarrow (\pi^- p) \pi^+$$

• Theta Cut: $\theta(\mu^{\pm})$ <12.5° and $\theta(\mu^{\mp})$ <40°

Previous Measurements: $J/\psi - 007$ Experiment

- Located in Hall C of Jefferson Lab.
- Inclusive measurement of J/ψ differential cross section through $J/\psi \rightarrow e^+e^-$

Duran, B., Meziani, ZE., Joosten, S. et al. Determining the gluonic gravitational form factors of the proton. Nature 615,813–816 (2023)

GlueX Phase-III

- Plots of the χ^2 difference for 1C ($J/\psi p$ interaction) and 2C ($J/\psi p$ and $\overline{D}^*\Lambda_C$) JPAC model
- Shows a high likelihood that added GlueX-III data could rule out the 1C model at the 5σ level

