Exclusive and Semi-Inclusive Pions: QED Effects Workshop TOWARDS IMPROVED HADRON TOMOGRAPHY WITH HARD EXCLUSIVE REACTIONS Jefferson Lab Newport News, USA

Andrei Afanasev

The George Washington University, Washington, DC

SIDIS Calculations were a part of PhD Thesis of Stinson Lee (GWU, 2025) Coordination with Harut Avakian (JLab) is acknowledged

Work supported by NSF Grant PHY-2111063

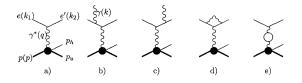
July 29, 2025

THE GEORGE

WASHINGTON UNIVERSITY

- Motivation & Introduction
- Background
- Assumptions & Calculations
- Results
- Conclusions

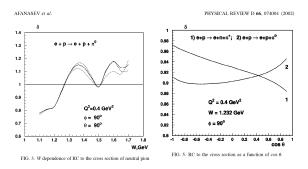
Radiative Corrections for Exclusive Processes


- Photon emission is a part of any electron scattering process: accelerated charges radiate
- Typical magnitudes for QED corrections for exclusive processed are around -20-30% due to large log enhancement factor log $\frac{Q^2}{m_e^2}$ and kinematic cuts
- Two-photon exchange corrections a part of QED corrections unaccounted for - are estimated at 1-4% at different angles - can be directly measured
- Exclusive electron scattering processes such as p(e,e'h₁)h₂ are actually inclusive p(e,e'h₁)h₂ nγ, where an infinite number of low-energy photons can be generated
- Low-energy photons do not affect polarization observables, thanks to Low theorem

QED Corrections for Electroproduction of Pions

Afanasev, Akushevich, Burkert, Joo, Phys.Rev.D66, 074004 (2002)

- Conventional RC, precise treatment of phase space, no peaking approximation, no dependence on hard/soft photon separation; extension to DVMP is straightforward;
- Can be used for any exclusive electroproduction of 2 hadrons, e.g., d(e,e'p)n (EXCLURAD code)


- Fortran code EXCLURAD is available at www.jlab.org/RC
- Used for data analysis at JLab, COMPASS, MAMI,...

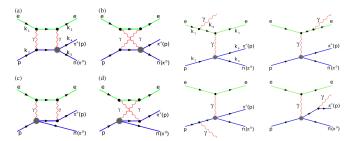
QED Corrections for (Exclusive) Electroproduction of Pions

Sample results from EXCLURAD

- QED corrections to unpolarized cross sections reach tens of per cent
- Corrections are dependent on both polar and azimuthal angles of outgoing hadron (pion), which affects extraction of resonance parameters in the resonance region and GPDs in the deep-virtual region

 QED corrections due to real-photon emission are smaller for polarization asymmetries

Two-photon Exchange Corrections for Inclusive and Exclusive Processes


- Ge/Gm polarization vs Rosenbluth discrepancy is agreed to be partly due to two-photon exchange (resulting from about 5 per cent missing systematic correction at high momentum transfers (see for review A Afanasev, PG Blunden, D Hasell, BA Raue, Prog. Part. Nucl. Phys., 2017
- JLab experiment Katich et al., Phys.Rev.Lett. 113 (2014)022502 reveals about 5 per cent polarization asymmetries in DIS on 3He that are zero in one-photon exchange approximation
- Proposed positron beamline at JLab will provide a direct probe for two-photon effects via measurements of electron-positron asymmetries

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Two-Photon Exchange Corrections for Electroproduction of Pions

Afanasev, Aleksejevs, Barkanova, Phys.Rev. D88: 053008, 2013

- Calculated previously neglected QED corrections from two-photon exchange
- Used a soft-photon approximation, results expressed in terms of Passarino-Veltman integrals

- Computed corrections result in about 5 per cent variation of cross section from backward to forward scattering angles
- Conclusion: Important for the analysis of angular dependences, $\cos(\phi)$ moments in particular

Two-Photon Exchange Corrections for Electroproduction of Pions

Afanasev, Aleksejevs, Barkanova, Phys.Rev. D88: 053008, 2013

• Angular dependencies of two-photon corrections affect σ_L/σ_T extraction

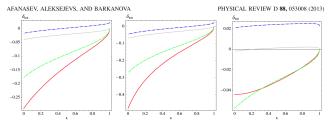


FIG. 5 (color online). π^0 electroproduction two-photon box correction (for detected proton) dependencies on virtual photon degree of polarization parameter ϵ for momentum transfers $Q^2 = 3.0$ GeV² (left plot), $Q^2 = 7.0$ GeV² (middle plot), and $Q^2 = 0.4$ GeV² (right plot). All plots are given for $\phi_4 = 90^\circ$ and $\theta_4 = 90^\circ$ and W = 1.232 GeV. Dot-dashed curve, SPT; dotted curve, SPT with $\alpha\pi$ subtractici, dashed curve, SPT; solid curve, FM approach.

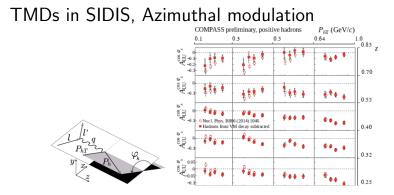
- These effects can be directly measured with proposed positron beamline at JLab
- Two-photon correction times two = electron-positron scattering UNIVERSITY asymmetry

THE GEORGE

Theory Challenges

- Both soft and hard photons in the loop integral are present
- Soft photons do not resolve the quark/parton structure
- Soft/hard scale separation is necessary
- We used Grammer-Yennie procedure for soft/hard separation as in AA, Brodsky, Carlson, Chen, Vanderhaeghen, PRD72, 013008 (2005)
- The results become dependent on soft-hard separation scheme, QED and QCD have to be consistently combined
- Not all of the contributions are factorizable in terms of GPDs

Next class of processes: SIDIS Semi-Inclusive electroproduction and TMD studies


 $\frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_1\,dP_2^2}$ x-section for $eN \rightarrow e'hX$ assuming one-photon exchange from Bacchetta et al, 1703.10157 $= \frac{\alpha^2}{x \, \mu Q^2} \frac{y^2}{2 (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right\}$ $+ \lambda_e \sqrt{2 \varepsilon (1 - \varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right]$ $+ \, S_L \, \lambda_e \left[\sqrt{1 - \varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1 - \varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right]$ + $S_T \left| \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} \right|$ $+ \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S}$ $+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)F_{UT}^{\sin(2\phi_h-\phi_S)} + S_T\lambda_e \left[\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)F_{LT}^{\cos(\phi_h-\phi_S)}\right]$ $+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}$

SIDIS phenomenology based on several assumptions¹, including:

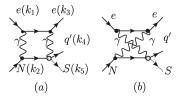
- One-photon exchange dominates;
- Transverse photon cross section dominates, and F_{UU}^L can be ignored shington

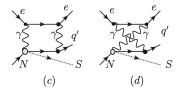
WASHINGTON, DC

¹Bacchetta et al. JHEP06(2017)081

COMPASS data

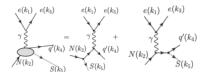
TPE Corrections


Considering the correction δ^{TPE} ,


$$\frac{d\sigma_{tot}}{dxdzdQ^2d^2P_T} \equiv d\sigma_{tot} = d\sigma_{exp}/(1+\delta^{TPE}) \sim (1-\delta^{TPE})\{K(y)[(1+\epsilon\frac{F_{UU,L}}{F_{UU,T}}) + \sqrt{2\epsilon(1+\epsilon)}\cos 2\phi\frac{F_{UU}^{\cos(2\phi)}}{F_{UU,T}} + \epsilon\cos\phi\frac{F_{UU}^{\cos\phi}}{F_{UU,T}}]\}$$
(1)

with x is Bjorken-x, transverse momentum of the detected meson P_T , Q^2 relates to the momentum transfer of the virtual photon.

Assumptions & Calculations $e(k_1) + N(k_2) \rightarrow e(k_3) + q'(k_4) + S(k_5),$



For quark-diquark model, q' represents quark and S represents diquark.

Assumptions & Calculations

Born-level one photon models, which equals to the sum of the "quark graph" and the "proton pole graph". q' and S stand for quark and diquark.²

 $^{^2\}mathrm{Afanasev}$ and Carlson, Phys. Rev. D 74.114027 (2004)

Assumptions & Calculations

Using soft-photon approximation (SPT 3) by neglecting the momentum for one of the photon while calculating the amplitude, such that

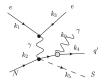
$$M^{2\gamma} = M^{1\gamma} \cdot \sum_{l} \left[\frac{-e^2}{2\pi} \cdot \sum_{i,j} (2k_i \cdot k_j) \right]$$

$$+ C_0(\{k_i, m_i\}, \{\mp k_j, m_j\})$$

$$= \sum_{l=N,q',s} \sum_{i=a,b,c} M^{1\gamma} M_{l,i,box},$$
(3)

where the Passarino-Veltman three-point scalar integral

$$C_{0}(\{k_{i}, m_{i}\}, \{k_{j}, m_{j}\}) = \frac{1}{i\pi^{2}} \int d^{4}q \frac{1}{q^{4}} \cdot \frac{1}{(k_{i} - q)^{2} - m_{i}^{2}} \cdot \frac{1}{(k_{j} - q)^{2} - m_{j}^{2}}.$$
(4)


The correction

$$\delta_{box} = \frac{2Re[M^{2\gamma}M^{1\gamma\dagger}]}{|M^{1\gamma}|^2} = 2Re[\sum_{l;i}M_{l,i,box}].$$

Assumptions & Calculations

Infrared divergence of two-photon exchange is canceled by interference between emission from electron lines and hadron lines (hadron Bremsstrahlung)

One of the possibilities for the hadron Bremsstrahlung process ⁴.

⁴Afanasev et al. Phys. Rev. D 88, 053008 (2013)

Results

- *E_{lab}* = 10.6 GeV;
- $Q^2 \approx 2.5 \ {
 m GeV^2};$
- y < 0.75 to avoid the region most susceptible to radiative effects and lepton-pair symmetric background;
- x = 0.31 (the invariant mass $W \approx 2.7$ GeV);
- *z* = 0.5;
- The polar angle of the detected meson is $\cos \theta = 0.8$ ($P_T \approx 0.35$) for P_T independent figures;
- The azimuthal angle of the detected meson is defined as $\phi = \pi/6$ for the figures that are ϕ independent; SF from Lund model
- $F_{UU,L}/F_{UU,T} \approx 0.2;$
- $F_{UU}^{\cos\phi}/F_{UU,T} \approx -0.05;$
- $F_{UU}^{\cos(2\phi)}/F_{UU,T} \approx 0.1.$

Results (see arXiv:2504.17123 and PRD 111, 113008 (2025))

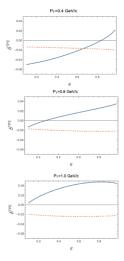


FIG. 5. TPE correction δ^{TPE} as a function of ϵ for fixed values of transverse momentum $P_T=0.4, 0.8, 1.0$ (GeV/c) at $z=0.7, Q^2=2.5$ GeV², x=0.31, and $\phi=\pi/6$. The blue solid line and the orange dashed line indicate the detected meson is π^+ and ρ^+ , respectively.

Kinematics of JLab E12-06-104

Results (see arXiv:2504.17123 and PRD 111, 113008 (2025)))

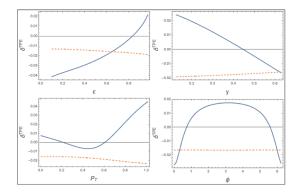
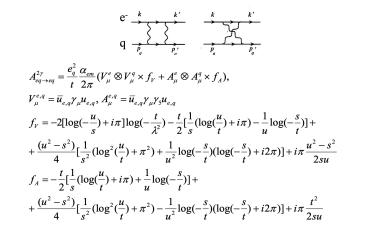
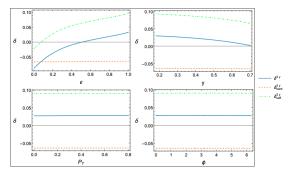



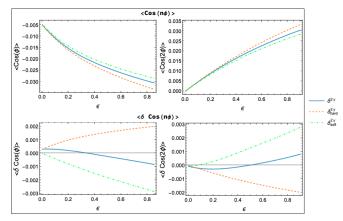
FIG. 6. Dependence of TPE correction δ^{TPE} on the virtual photon ϵ , electron's relative energy loss y, transverse momentum P_T , and azimuthal angle ϕ with $E_{lab} = 10.6$ GeV, $Q^2 = 2.5$ GeV², the mean value $\langle x_{BJ} \rangle = 0.31, z = 0.7$, using kinematics for projected experiments [29, 30]. The blue solid line and the orange dashed line represent the detected mesons are π^+ and ρ^+ meson, respectively.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC


Next Step: Hard Two-Photon Exchange

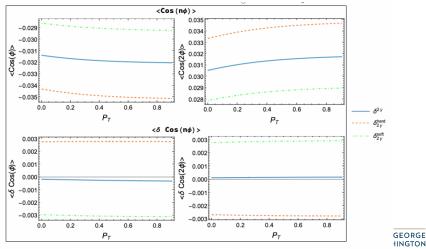
- Hard TPE on a parton
- Remove Soft-Photon Exchange at parton level and include it at hadronic level following AA, Brodsky, Carlson, Chen, Vanderhaeghen, PRL 93:122301,2004; PRD 92:013008,2005
- Two-photon amplitude for a (massless) quark

Soft+Hard Two-Photon Exchange: Results


Addition of "hard" TPE appears to reduce the total effect; (Q² ≈ 3.7 GeV²; x_{BJ} = 0.31; z = 0.7; P_T ≈ 0.3 for P_T independent figures; φ = π/6 for φ independent figures. Notice stronger dependence on electron's variables ε, y)

The orange dashed curves represent calculations based on the hard-photon exchange contribution, $\delta_{hard}^{2\gamma}$. The dot-dashed green curves the soft-photon contribution, $\delta_{soft}^{2\gamma}$. The blue solid curves show university the full TPE corrections, $\delta^{2\gamma}$.

Soft+Hard Two-Photon Exchange: Results


 Addition of "hard" TPE reduces the total effect for the azimuthal asymmetries, as well

Cosine moments as a function of polarization factor ϵ , computed using THE GEORGE $m_{q'} = 0$ and $m_s = m_p$ and kinematics of the future experiment in JLab WASHINGTON E12-06-010C.

Soft+Hard Two-Photon Exchange: Results

▶ Negligible variation with P_T

WASHINGTON, DC

Conclusion

- Two-photon exchange (TPE) effects alter angular dependence of cross sections in DVMP and SIDIS
- Their measurement is necessary for extracting GPDs, TMDPDFs and FFs, can be done with *positron beams* at CEBAF
- TPE corrections computed for projected JLab measurements of L/T separation and azimuthal asymmetries, TPE corrections of the two-photon exchange are in the range of ~ ±5% for y, ε & P_T dependence; cos(φ), cos(2φ) are affected by ≤0.5%
- Addition of hard two-photon exchange at a parton level *reduces* the total correction
- Next steps: Spin asymmetries in SIDIS; "hard" TPE for (exclusive) DVMP

