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2019-2020 Jefferson Lab LDRD Project: Universal Monte 
Carlo Event Generator (Wally, Sato)

 Simulate Physics Events with Machine Learning
– Data-Driven: directly learning from event samples

 Machine Learning-based Event Generators (MLEGs)
– Data preservation (JLab in a jump drive) 

 Compactified data storage utility
 Derivation of physics properties

– Faithful Representation of Nature
 Model independent
 Agnostic of theoretical assumptions about the microscopic nature of particle 

reactions
 Accurately mapping out the underlying probability distributions

– Much faster than MCEGs
 Simulation of the complete pipeline of particle experiment can take minutes to 

generate an event
 MLEGs can generate millions of events 
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Initial Attempt: Electron-Proton Scattering

 Direct Simulation Generative Adversarial Networks (GAN)

 Training Events
– Pythia Events with Center-of-mass energy of 100 GeV

 Inclusive Simulation
– Only trained on the momenta of the final state electrons

   

   

Alanazi et al., IJCAI 2021.
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Results of Director Simulation GAN
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Challenges in GAN Training

 Training a GAN is notoriously difficult
– Perfect Discriminator
– Mode Collapse
– Non-convergence
– Imbalance Generator and Discriminator Training
– Model parameter oscillation
– Destabilization
– Vanishing gradient

 Additional Requirements for Physics Event Generation
– Precise Event Feature Distributions

 Replicate the nature of particle reactions faithfully
– Obeying the Fundamental Physics Laws

 Energy Conservation
 Momentum Conservation
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Features Transformation

 Conversion to eliminate sharp edges

 Guarantee no generation of non-physical electrons

Alanazi et al., IJCAI 2021.
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Features Augmentation and Transformation GAN (FAT-GAN)

 Features Transformation

 Features Augmentation

 
   

 
   

 
      

 
      

Alanazi et al., IJCAI 2021.
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Results of FAT-GAN

No more non-physical events
with pz > 50 GeV

Good approximation of Q2 and 
xBj correlation with χ2 = 1.52

Alanazi et al., IJCAI 2021.
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Distributions of Generated Physical Properties

Alanazi et al., IJCAI 2021.

Joint distributions of Q2 and xbj
Distributions of Distributions of physical properties 
of the scattered electron, px, py, pz, E, pT , xbj and Q2
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FAT-GAN on experimental electron-proton scattering data

Alanazi et al., IJCAI 2021.
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Conditional GAN

 A GAN-based Event Generator w.r.t. Beam Energy Input

 

 

 

 

Velasco et al, ICMLA 2020
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Interpolation
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Extrapolation

Velasco et al, ICMLA 2020
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Latent Space

Velasco et al, ICMLA 2020
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Unfolding Vertex-level Events from Detector-level Events

 MLEG
– Transform noise into vertex-level simulated events

 Detector Proxy (Surrogate) GAN
– Detected simulator
– Mimic synthetic detector-level events

 Discriminator
– Differentiate detector-level events
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Detector Surrogate

 Detector Proxy GAN
– Conditional GAN
– Training samples

 From guessed vertex-level samples and corresponding detector-level samples 
using a detector simulator

Alanazi et al., Phys. Rev. D 106, 096002, 2022



- 19 -

Detector Surrogate for Electron-
Proton Scattering

 Detector Surrogate
– Conditional GAN Architecture
– Translate vertex-level events 

to detector level events
– Trained by detector 

parametrization provided by 
the eic-smear.

 Vertex-level events
– JAM global QCD analysis

 Detector-level events
– Simulated by EIC-smear
– Vertex- and detector-level 

distributions for ν1 and ν2, 
where significant 
distortions are observed

Comparison of training features at the vertex level 
(generated, green histograms) and detector level 
(smeared, blue histograms) with the MLEG 
generated synthetic data (red histograms). The insets 
illustrate the local smearing effect at the points 
indicated by the green vertical dashed lines.

Alanazi et al., Phys. Rev. D 106, 096002, 2022
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Unfolding Results

Alanazi et al., Phys. Rev. D 106, 096002, 2022
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HERA

Alanazi et al., Phys. Rev. D 106, 096002, 2022
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CLAS Exclusive 2π photoproduction 

 CLAS g11 kinematics
– Dataset used by CLAS Collaboration

 M. Battaglieri et al. (CLAS Collaboration) Phys. Rev. Lett. 102, 102001
 M. Battaglieri et al. (CLAS Collaboration) Phys. Rev. D 80, 072005

– Focus on 𝛾𝛾𝑝𝑝 → 𝑝𝑝𝜋𝜋+ (𝜋𝜋−)
– Fiducial cuts (𝑝𝑝,𝜃𝜃,𝜙𝜙) are used 
– Final exclusive 2𝜋𝜋 state identified by missing mass technique

 Variables are reconstructed by energy/momentum conservation
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Unfolding Detector Effect for CLAS Exclusive 2π photoproduction 

● Two main components:
○ Detector Simulation GAN (DS-GAN): Simulate the smearing detector effects

○ Unfolding GAN (UNF-GAN): Reconstruct the vertex-level events.

DS-GANVertex-level Detector-level

Vertex-level Detector-levelUNF-GAN

MC-Phase Space Events

MC-Realistic Events

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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Detector Simulation GAN (DS-GAN)

● Schematic view of DS-GAN
○ Generator converts input GEN vertex-level events features and noise into REC detector-level 

events. 
○ The training is performed on PS-MC pseudodata passed through the GEANT simulation. 
○ Synthetic REC and REC pseudodata are concatenated with GEN PS-MC events and fed to the 

discriminator.

Alghamdi et al., Phys. Rev. D 108, 094030, 2023



- 26 -

Phase Space (PS-MC) Event Generator

1D-Projection

Distribute final-state events according to the 𝜋𝜋+ 𝜋𝜋−𝑝𝑝 phase space

2D-Distribution

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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GSIM-GEANT for Detector Simulation

Apply detector simulation package GSIM to simulate detector effects (acceptance and 
resolution) based on GEANT3

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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Unfolding GAN (UNF-GAN)

 UNF-GAN framework
– Generator converts a GEN photon energy and random noise into synthetic GEN event features
– DS-GAN introduces simulated detector effect and converts synthetic GEN events into synthetic 

REC event features.
– Discriminator compares the features of the synthetic REC events and the REC events through 

GEANT.

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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2π Photoproduction Closure Test

 Generate events with a realistic MC (RE-MC) 2π Photoproduction model

 Apply detector effects with GSIM-GEANT

 Train a DS-GAN to learn detector effects using PS-MC + GSIM-GEANT

 Deploy the UNF-GAN that includes the DS-GAN, trained with RE-MC REC 
events

 Compare UNF-GAN GEN-SYNT events to RE-MC GEN events

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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Realistic MC (RE-MC)

 Realistic MC (RE-MC)
– Amplitude squared as an incoherent sum of 

the three dominant intermediate resonances 
observed, 
𝛾𝛾𝑝𝑝 → (𝑝𝑝𝜌𝜌0;∆++𝜋𝜋−; ∆0𝜋𝜋+) → 𝑝𝑝𝜋𝜋−𝜋𝜋+,

added to a ∼10% constant that mimics the 
nonresonant two-pion photoproduction 
contribution.

– Each process has been weighted with the 
corresponding contribution to the total cross 
section. 

– The angular distributions relative to resonance 
production are parametrized from measured 
differential cross sections. 

– The decays 𝑝𝑝 → 𝜋𝜋𝜋𝜋 and ∆→ 𝑝𝑝𝜋𝜋 are described 
using the correct spin structure with the decay 
matrix elements.

1D-Projection

2D-Distribution

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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Detector Effects on RE-MC Events

The 𝜋𝜋+ kinematic variables in the laboratory reference frame as GENerated with RE-
MC (left) and REConstructed by CLAS (right)

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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DS-GAN Results

 DS-GAN can learn the CLAS detector effect

CLAS ResolutionMC REC events vs DS-GAN synthetic events

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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DS-GAN Results on Derived Variables

 Derived Variables (not used in training)

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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UNF-GAN Results (Unfolding Results)

RE-MC GEN
events

UNF-GAN SYN
events

2D Pull

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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UNF-GAN Results on Derived Variables

 Derived Variables (not used in training)

CM Frame Lab Frame

Alghamdi et al., Phys. Rev. D 108, 094030, 2023
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Unfolding Detector Acceptance Effects

 Detector acceptance effect
 Limited area coverage in detector

 Particles produced in certain directions 
may not be detected.

 Data
 Single-pion photoproduction reaction 

𝜸𝜸𝜸𝜸 → 𝝅𝝅𝟎𝟎𝜸𝜸 in a kinematic range 
𝑬𝑬𝒄𝒄𝒄𝒄~𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

 Event represented by (𝜃𝜃𝑐𝑐𝑚𝑚 and 𝜙𝜙𝑐𝑐𝑚𝑚)
 Direction of particle scattering in 

center-of-mass frame

 Additional topological state (0 for 
unmeasured, 1 for measured).
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Classifier for Acceptance Effect

Classifier(𝜃𝜃𝑐𝑐𝑚𝑚, 𝜙𝜙𝑐𝑐𝑚𝑚) Measured or unmeasured



- 39 -

GAN Architecture for Acceptance Unfolding

● Key Feature: a custom, physics-informed penalty term in the 
generator loss
○ Penalize discrepancies between generated and true unmeasured topology event 

distributions.

Alghamdi et al., ITCAI 2024
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Results

Entire Phase Space

Alghamdi et al., ITCAI 2024
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Results of Unfolding Acceptance Effect

Unmeasured topology Measured topology

Entire Phase Space

Alghamdi et al., ITCAI 2024
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Generative AI for Multiple Topologies

● Build a single ML model to generate in the full phase space
○ According to the correct distributions

Tommaso Vittorini et al., GANs towards data smearing and acceptance 
corrections
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GAN Architecture for Multiple Topologies Simulation

Tommaso Vittorini et al., GANs towards data smearing and acceptance 
corrections
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Results

Tommaso Vittorini et al., GANs 
towards data smearing and 
acceptance corrections
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Generative AI

 Generative Adversarial Networks (GANs)

 Variational Autoencoder (VAE)

 

 

Normalizing Flow

z0 z1 zi-1 zi

𝑓𝜃0(𝑧0) 𝑓𝜃𝑖−1(𝑧𝑖−1) 𝑓𝜃𝑖(𝑧𝑖)

zn = x

𝑧𝑖~𝑝𝑝𝑖(𝑧𝑖)𝑧0~𝑝𝑝0(𝑧0) 𝑧𝑛~𝑝𝑝𝑛(𝑧𝑛)

... ...

Data Noise

Forward Diffusion 
Corrupt data by adding noise

Generate sample by denoising
Diffusion Reverse 

 Normalizing Flow (NF)

 Diffusion Models (DM)

Forward 
Mapper

Backward 
MapperX X’z

Ψ(·) Φ(·)
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A Comparison of GANs, VAEs, NFs, and DMs

Tareq et al., 2025
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Uncertainty Quantification in Generative AI

 Aleatory Uncertainty (Stochastic Uncertainty)
– Inherent random effects
– Not related to the number of data samples
– Not reducible with increasing number of data samples

 Epistemic Uncertainty (Systematic Uncertainty)
– Uncertainty due to lack of knowledge
– Reducible with more data samples

 Generative AI Model
– When to say “I don’t know”?
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Challenges: Plug physics into generative AI

 Change of Variables  Data Augmentation
– Symmetry

Pietro Vischia, Digital twins, inductive bias, and symmetries
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Challenges: Plug physics into AI (cont.)

 Architectural Design
– Equivariance under group 

transformation enforced by 
convolutional layers

 Output Transformation

 Loss function penalties
– Encode inconsistency of models inside 

the loss function as a penalty term

Pietro Vischia, Digital twins, inductive bias, and symmetries

Gloria Montana, Physics-constrained 
GAN for amplitude extraction
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Summary

 Development of ML-based event generator is still in 
its infant toddler stage

– Many Challenges in GAN
– Normalizing Flow or Diffusion Models have further 

advantages
– Incorporating physics into Machine Learning models is 

the KEY

 Current/Future Research
– Uncertainty Quantification
– Unfolding Detector Acceptance + Smearing + 

Inefficiency Effect
– Extracting Physics from ML

 Extract Amplitude (Collaboration with Gloria)
 Extract Resonance (Collaboration with Marco))
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