READ-OUT OF COLOR CENTERS WITH LIGHT-SHEET FLUORESCENCE MICROSCOPY

MINERAL DETECTION OF NEUTRINOS AND DARK MATTER WORKSHOP VIRGINIA TECH EXECUTIVE BRIEFING CENTER - JAN 11 2023

GABRIELA R. ARAUJO

THE PALEOCCENE CONCEPT READ-OUT OF COLOR CENTERS IN PASSIVE DETECTORS USING LIGHT-SHEET FLUORESCENCE MICROSCOPY

NUMBER OF CENTERS CAN BE USED TO ESTIMATE PINDUCED CENTER PINDUCED CENTER PRIOR TO EXPOSURE AFTER EXPOSURE

TO REACTOR VS

COLOR CENTERS ABSORB AND RE-EMIT LIGHT IN <u>OPTICAL</u> WAVELENGTHS, ENABLING A <u>FAST READ-OUT</u>.

TESTING THE PALEOCCENE CONCEPT

READOUT OF COLOR CENTERS WITH THE MESOSPIM

SPIM: Selective Plane Imaging Microscopy Scan speed at ~ $4 \mu m$ XYZ resolution: <10min/cm³ STATE-OF-THE-ART LIGHT-SHEET MICROSCOPE THAT IMAGES CENTIMETER -SIZED SAMPLES WITHIN MINUTES. NAT. METH. (2019)

Benchtop meso-scale SPIM

THE MESOSPIM

A "LARGE SCALE" LIGHT-SHEET FLUORESCENCE MICROSCOPY

FROM WHOLE-BODY RAT SCANS TO COLOR CENTER IMAGING IN CUBIC-CM SIZED CRYSTALS: New (2023) benchtop version was optimized for color center imaging*, with pixel sizes down to 0.21 μ m compared to ~1 μ m in previous version.

This new version has: sample holder for crystal imaging, <u>larger sCMOS</u> <u>camera</u> (5056x2960 pixels, 4.25 μ m pixel size), <u>magnification up to 20x</u> (1.5 μ m x-y resolution), <u>smaller footprint and cost</u>. File sizes for a full crystal scan and ~4 μ m isotropic resolution: ~30 Gb. b, Mouse P14, vDISCO Obj: PlatinumTL™ 0.9x Staining: PI

i, CaF₂ crystal, γ-irradiated Obj: Mitutoyo 20x/0.28 Color centers induced by γ-rays

IMAGING TRANSPARENT CRYSTALS WITH THE MESOSPIM SAMPLES: BLANK, IRRADIATED WITH γ-RAYS, OR NEUTRONS

1 cm³ CaF₂ transparent crystals (all sides polished) were irradiated with γ -rays or neutrons and imaged in comparison to a **blank**.

 γ -<u>RAY DOSES</u>: 100 kRad, 5 MRad (~10¹³-10¹⁴ ph/cm² from a ~1 MeV source ⁶⁰Co source)

<u>NEUTRON DOSES</u>: neutron flux of ~10⁸ n/cm²

CRYSTAL VENDORS: Crystran, or United Crystals

IMAGING TRANSPARENT CRYSTALS WITH THE MESOSPIM METHODS & ANALYSIS

CaF₂ transparent crystals (all sides polished, 1 cm³) were **irradiated** with γ -rays or neutrons and imaged in comparison to a **blank** crystal.

- 1. ESTIMATING BULK FLUORESCENCE: average fluorescence intensity within fiducialized volume.
- 2. FLUORESCENT TRACK-LIKE & POINT-LIKE STRUCTURES: Find pixel clusters & match repeated scans
- 3. ESTIMATING SINGLE COLOR CENTER FLUORESCENCE: matching of high-intensity pixels at 1-pixel level and comparison to random matches.

ESTIMATING THE FLUORESCENCE SIGNAL FROM COLOR CENTERS

CAMERA DARK COUNTS NOISE IS ESTIMATED IN DARK

SURFACE OILS, DUST, & POLISH ARE FLUORESCENT BACKGROUND

ESTIMATING THE FLUORESCENCE SIGNAL FROM IRRADIATED CRYSTALS

- CAMERA DARK COUNTS NOISE IS ESTIMATED IN DARK
- BLANK VS IRRADIATED CRYSTALS ARE COMPARED

BLANK CaF₂ CRYSTALS YIELDED NO BULK SIGNAL

ESTIMATING COLOR CENTER FLUORESCENCE SIGNAL

BLANK CaF₂ CRYSTALS YIELDED NO BULK SIGNAL

(*)MEASUREMENT WITH LONG-PASS FILTER

COLOR CENTER FLUORESCENCE SIGNAL BLANK VS IRRADIATED

CRYSTAL IS FLUORESCENT AFTER IRRADIATION*

MEASUREMENTS OF ABSORPTION

CRYSTAL BECOMES LESS TRANSPARENT AFTER IRRADIATION & RE-EMITS LIGHT IN BLUE.

Absorption and emission spectra seemed to match literature values from fluorescing crystals containing rare-earth elements.

& EMISSION SPECTRA

Fluorescence spectra from the irradiated crystal measured in response to 400 ± 10 nm light

BULK FLUORESCENCE FROM γ-IRRADIATED CRYSTALS COLOR CENTERS INDUCED BY IONIZATION

THE IONIZATION OF TRACE AMOUNTS OF RARE-EARTH ELEMENTS (REE)* BY γ -RAYS IS LIKELY THE CAUSE OF THE STRONG FLUORESCENCE OBSERVED IN THE γ -RAY IRRADIATED SAMPLES.

Element	Crystals	
	Unit (ppb)	Unit (ppb)
	VT14	100K
La	80	1400
Ce	6875	3020
Pr	45	330
Nd	530	1430
Sm	205	315
Eu	85	85

Table: concentration of REEs measured from two CaF_2 crystals that displayed high intensity of fluorescence after irradiation with neutrons (VT14) and γ -rays. (100kRad).

*Normally found in their stable trivalent state (such as Sm3+, Eu3+ occupying the place of Ca ions, with charge compensated by interstitial F– ions), these ions can transition to fluorescing divalent states (Sm2+, Eu2+) upon acquiring an electron.

300 ppb of Eu is enough to yield >1 impurity / μ m³ and explain the homogeneous blue fluorescence observed in the 100 kRad irradiated crystal. ¹²

IMAGING COLOR CENTER STRUCTURES OR SINGLE COLOR CENTERS **DATA ANALYSIS METHODS**

Example of track-like structure found by a clustering algorithm and also observed in a repeated scan. (10x magnific., 0.4 µm pixel size).

These structures may span a few z-planes but hot pixels span many more z-planes.

- 1. **BULK FLUORESCENCE:** average fluorescence intensity within fiducialized volume.
- 2. FLUORESCENT TRACK-LIKE & POINT-LIKE STRUCTURES: Find pixel clusters & match repeated scans
- 3. ESTIMATING SINGLE COLOR CENTER FLUORESCENCE: matching of high-intensity pixels at 1-pixel level and comparison to random matches.

IMAGING COLOR CENTER STRUCTURES OR SINGLE COLOR CENTERS **DATA ANALYSIS METHODS**

TO CONFIDENTLY IMAGE SMALL STRUCTURES/SINGLE COLOR CENTERS SEVERAL BACKGROUND SOURCES NEED TO BE ESTIMATED &/OR EXCLUDED FROM THE DATA.

Example of track-like structure found by a clustering algorithm and also observed in a repeated scan. (10x magnific., 0.4 µm pixel size).

These structures may span a few z-planes but hot pixels span many more z-planes.

Datasets are very large (several Gb). **Analysis is computationally intensive** (exclusion of background sources at pixel level while finding track-like or point-like structures and matching them in repeated scans). -> **Development of Analysis Methods** (V. Aerne, MSc Thesis, UZH 2023)

& BACKGROUND SOURCES

EXTERNAL SOURCES: <u>STRAY LIGHT & FILTER LEAKAGE:</u> Estimated with blank measurement.

CAMERA SHOT NOISE:

estimated by data taking with laser off.

HOT PIXELS & LENS FLUORESCENCE:

Exclusion of fluorescent spots that appear in the same xy position across several z-planes.

SAMPLE SOURCES:

TRACE IMPURITIES FLUORESCENT UPON IONIZATION & FLUORESCENT SURFACE OILS, DUST, POLISH:

Avoided/excluded by fiducialization, comparison between neutron and γ -irradiated samples.

Further checks: Repeat scan and search for xyz matches. Estimate random matching.

ANALYSIS METHODS FOR IMAGING COLOR CENTERS WITH THE MESOSPIM FINDING TRACK-LIKE (LARGE) FLUORESCENT STRUCTURES

Example of track-like structure found by a clustering algorithm and also observed in a repeated scan. 10x magnific., 0.4 µm pixel size (ps)

These structures may span a few z-planes but hot pixels span many more z-planes.

Only the same spot shows high correlation in the repeated scan. -> The structure is a real fluorescent feature in the crystal.

Work of MSc. Student V. Aerne

ANALYSIS METHODS:

- 1) Automatic fiducialization of the data
- 2) Algorithm to find dense color center structures
 - Connects high-intensity pixels
 - Selects structures that exceed a certain threshold.
- 3) Structure matching
 - Compare structures to repeated scans
 - Quantify similarity

Origin of the structure is unknown. They were first identified by eye, but a couple more were found by this analysis method.

ANALYSIS METHODS FOR IMAGING COLOR CENTERS WITH THE MESOSPIM SIGNAL INDUCED BY NEUTRONS: FINDING POINT-LIKE STRUCTURES

Work of MSc. Student V. Aerne

Example of bright pixels appearing at repeated scans imaged at 6x, 1µm ps. Only a few structures are observed in the data (but this data was taken at lower resolution and the structures are expected to be small).

-> use a different analysis method

Excess of matches in data of neutron irradiated crystal is observed in comparison to random matching estimation. **Bulk fluorescence** measurements **also show excess** in comparison to blank.

ANALYSIS METHOD:

- Automatic fiducialization of the data
- 2) Algorithm to find dense color center structures Find high intensity pixels.
- 3) Pixel matching

1)

- Find number of matching pixels
- Exclude defective pixels
- Compare to random matching

Still to investigate: Sample variability, intensity of neighboring pixels using high magnification scans (20x), level of signal excess for γ -irradiated crystals.

SUMMARY & OUTLOOK

Demonstrated imaging of radiation-induced color centers with light-sheet microscopy;

Current tests focus on the production of neutron induced color centers and identification of single color centers in this data;

Future tests will focus on:

- different materials (LiF, Al₂O₃, ...);
- relation between fluorescence istensity and neutron dose;
- imaging large ion-induced (or Li $(n,\alpha)^{3}$ H) tracks. _

Applications of imaging color centers with the mesoSPIM beyond PALEOCCENE ($CE_vNS \& DM$ detection): Paleo detectors neutron detectors, Rock dating (geology)

Prof. L. Baudis Dr. N. Vladimirov G. R. Arauio

V. Aerne

Dr. J. M .Melero

PALEOCCENE: 2104.13926, 2203.05525 mesoSPIM: bioRxiv 2023.06.16.545256

BACK UP SLIDES