MDvDM 2024, January 8-11th 2024

Astrophysical neutrinos with paleo detectors

Astrophysical neutrino fluxes

Wide range of energies

Different source physics & detection strategies

Vitagliano et al (2020)

Neutrino detection

- Detector must be massive
 Detectors are optically thin -- need large volumes
- Detector must be "quiet" Low natural radioactivity and lots of shielding
- Detector better to have background rejection
 Canabilities to distinguish signal and backgrounds

Paleo detectors: natural solid state nuclear track detectors, recording nuclear recoils over geological timescales

Super-Kamiokande Hyper-Kamiokande

Water (doped) _{Sh} *Running*

Water *Building*

Mineral detectors

Rock mineral *R & D*

Paleo detectors

Recently revived as direct dark matter probes Drukier et al (2019), Edwards et al (2019)

Natural minerals as old as ~10⁹ years

Permanent damage tracks carry information about recoils = solid state nuclear track detectors

Microscopy: small angle X-ray scattering + computer tomography

Modern readout technologies allow fast nm-resolution mapping of structures in macroscopic samples

Neutrino @ paleo detectors

- Detector must be massive have large exposure Operate over geological timescales
- **Detector must be "quiet"** Low natural radioactivity: find samples Lots of shielding: sample from deep underground
- **Detector better to have background rejection** Added challenge due to being a passive detector without active background rejection

neutrino

Paleo detectors: natural solid state nuclear track detectors, recording nuclear recoils over geological timescales

Water (doped) Running Sh

Water Building

Liquid argon Building

Mineral detectors

Rock mineral R & D

SUPERNOVA NEUTRINOS

Under the hood

(adapted from G. Raffelt's slides)

Under the hood

(adapted from G. Raffelt's slides

Under the hood

99% into neutrinos (~0.01% into photons) entire visible Universe

Where are we?

10-40 MeV neutrino signal lasting ~ 10 s

1987: Massive star explodes as Type II supernova

Supernova neutrino detection frontiers

Features:

- Wait For nature's cooperation
- Precision multi-messenger observations on 1 progenitor
- Surprises?

Features:

- Guaranteed signal (no waiting)
- Many progenitors, population studies
- Cosmological distances
- Surprises?

Milky Way: detection ready

High number of neutrino detections expected from a Galactic core collapse

Experiment	Туре	Mass (kt)	Location	11.2 M_{\odot}	$27.0~M_{\odot}$	$40.0~M_{\odot}$
Super-K	$H_2 O / \bar{\nu}_e$	32	Japan	4000/4100	7800/7600	7600/4900
Hyper-K	$H_2 O/\bar{\nu}_e$	220	Japan	28K/28K	53K/52K	52K/34K
IceCube	String/ $\bar{\nu}_{e}$	2500*	South Pole	320K/330K	660K/660K	820K/630K
KM3NeT	String/ $\bar{\nu}_{e}$	150*	Italy/France	17K/18K	37K/38K	47K/38K
LVD	$C_n H_{2n} / \bar{\nu}_e$	1	Italy	190/190	360/350	340/240
KamLAND	$C_n H_{2n} / \bar{\nu}_e$	1	Japan	190/190	360/350	340/240
Borexino	$C_n H_{2n} / \bar{\nu}_e$	0.278	Italy	52/52	100/97	96/65
JUNO	$C_n H_{2n} / \bar{\nu}_e$	20	China	3800/3800	7200/7000	6900/4700
SNO+	$C_n H_{2n} / \bar{\nu}_e$	0.78	Canada	150/150	280/270	270/180
NOνA	$C_n H_{2n} / \bar{\nu}_e$	14	USA	1900/2000	3700/3600	3600/2500
Baksan	$C_n H_{en} / \bar{\nu}_e$	0.24	Russia	45/45	86/84	82/56
HALO	Lead/ ν_{e}	0.079	Canada	4/3	9/8	9/9
HALO-1kT	Lead/ ν_{e}	1	Italy	53/47	120/100	120/120
DUNE	Ar/ν_e	40	USA	2700/2500	5500/5200	5800/6000
MicroBooNe	Ar/ν_e	0.09	USA	6/5	12/11	13/13
SBND	Ar/ν_e	0.12	USA	8/7	16/15	17/18
DarkSide-20k	Ar any ν	0.0386	Italy	—	250	
XENONnT	Xe/any ν	0.006	Italy	56	106	
LZ	Xe/any ν	0.007	USA	65	123	
PandaX-4T	Xe(any ν	0.004	China	37	70	
		/				

SNEWS (2022)

Milky Way: flavor sensitivity

13

Diffuse flux: model prediction

Diffuse supernova neutrino searches

Reaching factor of 2 of many predictions

Capture on Gadolinium: proposed in 2003, after many R&D, Super-K was drained in 2018, refurbished, and doped by Gd in 2020

> Beacom & Vagins (2004) SK 2021 (arXiv:2109.00360)

Beyond nuebar flavor

Shunsaku Horiuchi

Moller et al (2018) Suliga et al (2022)

Paleo detector: advantages

All flavors

- CEvNS interaction for SN neutrino energies Competitive exposure
- 100 grams over 10⁹ years = 10⁵ t year
 Large, unique signal
 - Duration >> inverse of Galactic supernova rate

Backgrounds, backgrounds, backgrounds...

Natural defects:

- Single sites or stretches across sample \rightarrow distinguish
- **Cosmogenic:**
 - Muons negligible by ~ 5 km \rightarrow sample from deep underground

Radiogenic:

- ²³⁸U decay chain localized \rightarrow distinguish
- Neutrons from spontaneous fission, (a,n) reactions \rightarrow find radiopure sample \bullet

Other neutrinos:

- Atmospheric, solar
- \rightarrow Cannot distinguish on eventby-event basis
- \rightarrow Detection using wide-band track spectrum

Supernova neutrino detection

Detection with sufficiently old & pure sample:

Olivine -- $Mg_{1.6}Fe_{0.4}(SiO_4)$ Nchwaningite -- $Mn_2SiO_3(OH)_2 \cdot (H_2O)$ (1% uncertainty on radiogenic backgrounds) (100% uncertainty on neutrino backgrounds)

Probes of Milky Way models

Was Milky Way's star formation rate higher in the past?

Sufficiently pure minerals can rule out constant rate model

(10 paleo detectors, 100 g each, measuring integrated rates over 100, 200, 300, ...10³ Myr)

Probes of neutrino emissions

If Galactic supernova rate is known well...can test neutrino emissions

Combine with DSNB nuebar from HyperK and DSNB nue from DUNE \rightarrow residual vx

Maybe only way to reveal the mean nux flux from many core collapses

Baum et al (2022)

(100g of epsomite with 1 Gyr age + 20 yrs HyperK & DUNE run time)
(15nm track resolution)
(100% uncertainty on radiogenic & neutrino backgrounds)
(20% uncertainty on HK & DUNE backgrounds)
(10% uncertainty on DSNB flux & galactic rate)

SOLAR NEUTRINOS

Solar neutrinos

Energy generation by fusion: neutrinos as energy sink

Standard solar model (SSM)

Provides stellar interior model \rightarrow neutrino predictions

Multiple measurements

Some recent measurement uncertainties

Shunsaku Horiuchi

Baum et al 2022

Breaking SSM assumptions

SSM: star is chemically homogeneous without further mass loss or gain

Solar metallicity problem : different metallicity SSMs and helioseismic constraints

- Z/X = 0.0229 (GS98) \rightarrow HZ model, matches helioseismology
- Z/X = 0.0178 (AGSS09) \rightarrow LZ model, doesn't match helioseismology

CNO neutrinos, which depend Ratio of LZ — to HZ — (=1) linearly on the core's metal in each solar neutrino flux abundance, is useful diagnostic 0.8 0.6 0.4 0.2 n ¹⁵**O** ⁸B ¹³N ⁷Be hep pep pp

CNO cycle

¹⁷F

Stability of the Sun

Hydrogen-burning ("main-sequence") \rightarrow very stable

Tapia-Arellano & Horiuchi (2021)

Astrophysical neutrino summary

Astrophysical neutrino detection with paleo detectors Challenges are similar to those of direct dark matter detection

Paleo detectors offer unique insights into astrophysics Window into time-evolution over geological time scales, with competitive exposure

Supernova implications

Mineral detectors offer perhaps the best probe of heavy lepton neutrinos – both supernova burst neutrinos and diffuse supernova neutrinos

Solar implications Unique probes of the time-evolution of our Sun over gigayears

Thank you

BACKUP

Prediction, including sub-populations

Kresse et al (2021)

See also: Lunardini (2009), Lien et al (2010), Yang & Lunardini (2011), Keehnn & Lunardini (2012), Nakazato (2013), Mathews et al (2014), Yuksel & Kistler (2015), Nakazato et al (2015), Hidaka et al (2016), Priya & Lunardini (2017), Moller et al (2018), Horiuchi et al (2018), Sing & Rentala (2021), Kresse et al (2021), Horiuchi et al (2021), Ashida & Nakazato (2022), Ekanger et al (2022), Ziegler et al (2023)

DSNB flux prediction With multiple population

PyDSNB: a public code to estimate flux

https://github.com/shinichiroando/PyDSNB

Choice inputs:

- Hydro model \bullet
- Late-time model \bullet
- Initial mass function \bullet
- Dark collapse model
- Dark collapse fraction
- Neutrino mass hierarchy ullet

Ando, Ekanger, Horiuchi, Koshio (2023)

Error budget

FIG. 6. Estimated errors of DSNB event rates for normal ordering at SK-Gd from SFRD measurements ('SFRD'), latephase treatment ('LP,' Analytic or RenormLS), failed supernova modeling ('BH,' see Fig. 7), H_0 , and IMF assumption ('IMF,' Chabrier, Salpeter A, or Baldry-Glazebrook). Quantitative values are given in Table II.

