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Astrophysical neutrino fluxes
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Wide range of energies
Different source physics & detection strategies

Vitagliano et al (2020)



Neutrino detection
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• Detector must be massive        
Detectors are optically thin -- need large volumes

• Detector must be “quiet”            
Low natural radioactivity and lots of shielding

• Detector better to have background rejection                  
Capabilities to distinguish signal and backgrounds

neutrino

Mineral detectors

Rock mineral
R & D

Super-Kamiokande    Hyper-Kamiokande                    DUNE

Water (doped)                   Water             Liquid argon 
       Running                 Building                Building

Paleo detectors: natural solid state nuclear track detectors, 
recording nuclear recoils over geological timescales



Paleo detectors
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Recently revived as direct dark matter probes

Natural minerals as 
old as ~109 years Permanent damage tracks 

carry information about 
recoils
= solid state nuclear track 
detectors

Modern readout 
technologies allow fast 
nm-resolution mapping 
of structures in 
macroscopic samples

Microscopy: small angle X-ray scattering + computer tomography

Drukier et al (2019), Edwards et al (2019)



Neutrino @ paleo detectors
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neutrino

Mineral detectors

Rock mineral
R & D

Super-Kamiokande    Hyper-Kamiokande                    DUNE

Water (doped)                   Water             Liquid argon 
       Running                 Building                Building

• Detector must be massive have large exposure   
Operate over geological timescales

• Detector must be “quiet”             
Low natural radioactivity: find samples             
Lots of shielding: sample from deep underground

• Detector better to have background rejection 
Added challenge due to being a passive detector 
without active background rejection

Paleo detectors: natural solid state nuclear track detectors, 
recording nuclear recoils over geological timescales



SUPERNOVA NEUTRINOS
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Under the hood

Massive (>8Msun) star structure

FeSiOCHeH

Core collapse (implosion)

~8000 km

(adapted from G. Raffelt’s slides)7Shunsaku Horiuchi



Under the hood
Core collapse (implosion)

R: 8000 km à ~20 km
r: ~109 g cm-3 à ~1014 g cm-3

T: ~1010 K à ~30 MeV

Bounce shockNewborn neutron star   

Neutrino 
Cooling

Energy budget ~ 3 x 1053 erg
99% into neutrinos
(~0.01% into photons)
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Neutrino luminosity
    Ln ≈ 3 x 1053 erg / 3 sec 
         ≈ 3 x 1019 LSUN
While it lasts, it outshines the 
entire visible Universe



Where are we?
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1987: Massive star explodes as Type II supernova 10 – 40 MeV neutrino signal lasting ~10 s

Theory: core collapse, emits 
neutrinos, launches shock, 
causes supernova explosion

But much remains to be tested
Astrophysics
• Explosion mechanism
• Instabilities
• Progenitor structure
• Black hole formation
Nuclear physics
• Equation of state
• Phase transitions
Particle physics
• Neutrino physics
• New particles
…and many, many more…



Supernova neutrino detection frontiers

~kpc ~Mpc ~Gpc

From Beacom (2011)
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Galactic Nearby galaxies Cosmological

NEUTRINO BURST
SN rate ~ 0.01 /yr

Features:
• Wait For nature’s cooperation
• Precision multi-messenger 

observations on 1 progenitor
• Surprises?

DIFFUSE NEUTRINOS

Features:
• Guaranteed signal (no waiting)
• Many progenitors, population studies
• Cosmological distances
• Surprises?



Milky Way: detection ready
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High number of neutrino detections expected from a Galactic core collapse

SNEWS (2022)
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Milky Way: flavor sensitivity
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nuebar flavor

nue flavor

nux flavor

Water Cherenkov Long String Scintillator

And now, mineral detectors
è Kate Scholberg’s talk

Xenon

IBD

Liquid argon

Lead

CEvNS

Must rely on NC…



Diffuse flux: model prediction
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Rate of massive star 
core collapse; 
directly observed

Ekanger et al (2024)

Time-integrated neutrino emission; 
detected in SN1987A, predicted by 
simulations

Flux

Ando et al (2023)



Diffuse supernova neutrino searches

Shunsaku Horiuchi 15

Reaching factor of 2 of many predictions

Capture on Gadolinium: 
proposed in 2003, after many 
R&D, Super-K was drained in 
2018, refurbished, and doped 
by Gd in 2020

Beacom & Vagins (2004)
SK 2021 (arXiv:2109.00360)



Beyond nuebar flavor
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DUNE
• 40k ton lq Ar
• Signal & bkg studies

Moller et al (2018) Suliga et al (2022)

Direct DM detectors
• Xe or Ar targets
• Solar & atm. bkgs

à Limits?

40 ton Xe



Paleo detector: advantages
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All flavors
• CEnNS interaction for SN neutrino energies

Competitive exposure
• 100 grams over 109 years = 105 t year

Large, unique signal
• Duration >> inverse of Galactic supernova rate

Baum et al (2020)

Sum of Galactic 
supernovae

Extragalactic 
supernovae



Backgrounds, backgrounds, backgrounds…
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Natural defects:

Cosmogenic: 

Radiogenic:

Other neutrinos:

Baum et al (2022)

• Single sites or stretches across sample à distinguish

• Muons negligible by ~5 km à sample from deep underground

• 238U decay chain localized à distinguish 
• Neutrons from spontaneous fission, (a,n) reactions à find radiopure sample

• Atmospheric, solar

w/ SRIM

à Cannot distinguish on event-
by-event basis

à Detection using wide-band 
track spectrum



Supernova neutrino detection
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Baum et al (2020)

(15nm track resolution)
(1% uncertainty on radiogenic backgrounds)
(100% uncertainty on neutrino backgrounds)

Detection with sufficiently old & pure sample:
Smallest supernova rate 
that can be detected (3s) 
is larger than present 
supernova rate

Current rate



Probes of Milky Way models
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Baum et al (2020)

Was Milky Way’s star formation 
rate higher in the past?

è Sufficiently pure minerals can rule out 
constant rate model

(10 paleo detectors, 100 g each, measuring 
integrated rates over 100, 200, 300, …103 Myr)



Probes of neutrino emissions
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If Galactic supernova rate is known well…can test neutrino emissions

Combine with DSNB nuebar from HyperK and DSNB nue from DUNE à residual nx 

nue nuebar nux

(100g of epsomite with 1 Gyr age + 20 yrs HyperK & DUNE run time)
(15nm track resolution)
(100% uncertainty on radiogenic & neutrino backgrounds)
(20% uncertainty on HK & DUNE backgrounds)
(10% uncertainty on DSNB flux & galactic rate) 

Baum et al (2022)

è Maybe only way to reveal the mean nux flux from many core collapses



SOLAR NEUTRINOS
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Solar neutrinos
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Energy generation by fusion: neutrinos as energy sink

CNO-chainpp-chain



Standard solar model (SSM)
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pp: ±0.6%

8B: ±12%

7Be: ±6%

CNO: 
±15-20%

pep: ±1%

Provides stellar interior model à neutrino predictions

Baum et al 2022



Multiple measurements
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pp: ±0.6%

8B: ±12%

7Be: ±6%

CNO: 
±15-20%

pep: ±1%

Some recent measurement uncertainties

Baum et al 2022

Borexino Super-K

±10%

±2.7%

±2%

±18%

±42% -10%



Breaking SSM assumptions
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SSM: star is chemically homogeneous without further mass loss or gain
 
Solar metallicity problem : different metallicity SSMs and helioseismic constraints

• Z/X = 0.0229 (GS98) à HZ model, matches helioseismology
• Z/X = 0.0178 (AGSS09) à LZ model, doesn’t match helioseismology

CNO neutrinos, which depend 
linearly on the core’s metal 
abundance, is useful diagnostic

Vinyoles et al (2017)



Neutrinos take seconds, photons take ~170,000 yrs to escape: stability established

Stability of the Sun
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Hydrogen-burning (“main-sequence”) à very stable

Evolution can be tracked 
by paleo detectors
è Natalia Tapia-

Arellano’s talk

8B

convective

Tapia-Arellano & Horiuchi (2021)



Astrophysical neutrino summary
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Astrophysical neutrino detection with paleo detectors
Challenges are similar to those of direct dark matter detection

Paleo detectors offer unique insights into astrophysics
Window into time-evolution over geological time scales, with competitive 
exposure

Supernova implications
Mineral detectors offer perhaps the best probe of heavy lepton neutrinos –
both supernova burst neutrinos and diffuse supernova neutrinos

Solar implications
Unique probes of the time-evolution of our Sun over gigayears

28

Thank you



BACKUP
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Prediction, including sub-populations

Shunsaku Horiuchi 30

Kresse et al (2021)
See also: Lunardini (2009), Lien et al (2010), Yang & Lunardini (2011), Keehnn & 
Lunardini (2012), Nakazato (2013), Mathews et al (2014), Yuksel & Kistler (2015), 
Nakazato et al (2015), Hidaka et al (2016), Priya & Lunardini (2017), Moller et al 
(2018), Horiuchi et al (2018), Sing & Rentala (2021), Kresse et al (2021), Horiuchi et al 
(2021), Ashida & Nakazato (2022), Ekanger et al (2022), Ziegler et al (2023)
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Ando, Ekanger, Horiuchi, Koshio (2023)

PyDSNB: a public code to 
estimate flux
https://github.com/shinichiroando/PyDSNB

Choice inputs:
• Hydro model
• Late-time model
• Initial mass function
• Dark collapse model 
• Dark collapse fraction
• Neutrino mass hierarchy

DSNB flux prediction
With multiple population



Error budget
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