Paleodetection at Queen's Aaron Vincent (et al.)

Queen's Paleodetection Team

Queen's Centre for Understanding Minerals by Blasting them with Excessive Radiation (QCUMBER)

Geological Sciences

Matt Leybourne

Sharlotte Mkhonto

Ongoing efforts at Queen's

- Geochemistry: Identifying and characterizing candidate minerals for paleodetection
- Physics theory: predicting expected signals for WIMP and non-WIMP dark matter + other new physics
- Materials Engineering: producing track damage with proton accelerator beam to test theory against experiment.

Rocks Looking for suitable candidates

- Should be stable against annealing over (at least) Myr time scales
 - e.g. halite, anything with H not great
- Should have very little U/Th content to mitigate fission track backgrounds

Two candidates

- Olivine (Mg,Fe)₂SiO₄
 - Has been suggested before (e.g. \bullet
 - Not expected to take up much uranium
 - "helps align the heart chakras" (source: the internet)

Annealing: we don't know much; most work has been done on apatite since it's used for fission track dating

- Galena (PbS)
 - Not used before (as far as we know) \bullet
 - Not expected to take up much uranium
 - No healing properties :(lacksquare

U/Th contents

Leybourne lab laser ablation with ICP-MS

Data from Matt & Sharlotte

Calibrating Talk by Levente tomorrow

Reactor materials testing laboratory (RMTL) @ Queen's

3 MeV proton beam

Dark matter is of course -Non-relativistic -Neutral

But

-we expect the atomic displacements following the primary interaction to behave in a similar way, regardless of the cause of the primary interaction.

-A neutron beam is hard to make, and leads to a lot of extra radioactivity

-If our measured vs modeled spectra match using the proton beam, we will have gained a measure of confidence in our approach

Calibrating Talk by Levente tomorrow

Reactor materials testing laboratory (RMTL) @ Queen's

Prepare sample

NEW	
13	

Olivine non-irradiated

Large grains with Widmanstatten pattern

Thalles Lucas

Irradiated Olivine 5 MEV – 0.25 DPA

- - 1,2,3,4.

Thalles Lucas

 The irradiation induced the formation of nanostructures in the olivine. The SAED identified that these nanograins are crystalline in nature.

• Four regions with the possibility to be a amorphous track with length of: 32 nm, 62 nm, 85 nm and 108 nm respectively to

Theory work

Slides from Yilda Boukhtouchen

Fermionic DM Composite States

$$\mathscr{L}_D = \bar{X}(i\gamma^{\mu}\partial_{\mu} - m_X)X + g_{\phi}\bar{X}\phi X - \frac{1}{2}m_{\phi}^2\phi^2 + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$$

At large enough N, constituents form degenerate Fermi gas

Solve system numerically for composite characteristics $(R, M, E_R \dots)$

Dirac fermion X of mass m_{γ} , which has self-interactions through a light scalar field ϕ

1707.02313 and others

Slides from Yilda Boukhtouchen

Composites Larger than SM Nuclei

If $R_{DM} > R_{SM}$, we can extend the upper cross-section limit

Other groups have considered phenomenology of compact, tightly-bound composites ($E_R \sim m_X, R \sim N^{1/3}$)

Loosely-bound composites ($E_B < m_X$) are also interesting: $R \sim N^{2/3}$ so are larger at the same N

Slides from Yilda Boukhtouchen

Detection Signature in Minerals

For large composite masses: Elastic, hard-sphere scattering with nuclei in mineral

Calculate single PKA's cascade of scatters in SRIM

All displaced nuclei are scattered radially outwards as composite passes, creating a cylindrical track

Energy deposition (eV) for DM radius of 50 Å

25 eV: displacement energy threshold

1 eV: energy required for melting (per atom)

New physics with solar neutrinos

Low momentum: Coherent neutrino-nucleus scattering (CEvNS

Momentum exchanged for neutrino-nucleon events is around keV scale

Q² unstudied in those settings, can probe new interactions.

New physics: new light mediators? (Secret neutrino interactions/NSI)

 $\mathcal{L} = g_{\nu} Z'_{\mu} \bar{\nu}_L \gamma^{\mu} \nu_L + Z'_{\mu} \bar{\ell} \gamma^{\mu} g_l \ell$

 $\frac{d\sigma_{\nu e}}{dE_R} - \frac{d\sigma_{\nu e}^{\rm SM}}{dE_R} = -\frac{\sqrt{2}G_F m_e g_v g_\nu g_e}{\pi \left(2E_R m_e + m_{Z'}^2\right)}$ $+ \frac{m_e g_{\nu}^2 g_e^2}{2\pi \left(2E_R m_e + m_{Z'}^2\right)^2}$

 $\mathcal{L} \supset (g_{\nu} \, \phi \bar{\nu}_R \nu_L + h.c.) \, + \, \phi \bar{\ell} g_l \ell$

 $d\sigma_{\nu e}^{\rm SM}$ $g_{\nu}^2 g_e^2 E_R m_e^2$ $d\sigma_{\nu e}$ $dE_R = \frac{1}{4\pi E_{\nu}^2 \left(2E_R m_e + m_{\phi}^2\right)^2} \,.$ dE_R

See arXiv : 1604.01025, 2006.11250

18

Solar neutrinos + new light mediator: recoil spectrum

nu-e interactions could have explained the XENON1T excess (which was probably just tritium or something)

Reach of direct detection experiments + other constraints

Paleo-adjacent work: heavy elements

In many heavy elements, there are

momentum transfer q

$$v_{\min}(E_R) = \frac{1}{\sqrt{2M_N E_R}} \left(\frac{M_N}{\mu_{\chi N}} E_R + \Delta \right) \,.$$

Isotope	Abund.[%]	$J^p_{ m g.s.}$	$J^p_{ m e.s.}$	$\Delta E [\rm keV]$	${ m B(E2)}[W.u.]$	$\eta [\%]$	Bkg.[mBq/kg]
$^{177}\mathrm{Hf}$	18.60	$7/2^-$	$9/2^-$	112.9500	282(8) [68]	9.64	0.9
$^{178}\mathrm{Hf}$	27.28	0^+	2^+	93.1803	160(3) [69]	7.37	2.2
$^{180}\mathrm{Hf}$	35.08	0^{+}	2^+	93.3240	154.8(21) [70]	7.37	2.2
^{189}Os	16 15	$3/2^-$	$1/2^-$	36.17	27(7) [71]	0.695	0.40 (proj.)
05	10.10	$3/2^-$	$5/2^{-}$	69.54	100(10) [71]	1.75	0.16
$^{201}\mathrm{Hg}$	13.17	$3/2^-$	$1/2^{-}$	1.5648	~ 34 [72]	50	0.0056 (proj.)

excited states in the few-keV range that can yield a deexcitation gamma ray

For inelastic dark matter, a heavy target nucleus is necessary to get the required

Serge Nagorni

Ningqiang Song

2104.09517

Pt or Hf foil

Gamma ray search at LNGS/analysis at Queen's:

- -55 g of Hafnium 2012.08339/Nuc Phys B
- -45 g of platinum 2209.11106/Nuc Phys B
- -new limits on rare decays
- -+ new limits on dark matter-induced excitation

1 TeV inelastic dark matter

Pushing the frontier of WIMPy inelastic dark matter: journey to the end of the periodic table

Solid: existing data; dashed: potential reach for cosmic ray-boosted dark matter

Summary

- Ongoing analysis work on samples of olivine & galena
- Ongoing calibration work with 3 MeV proton beam
- Ongoing theory work looking at the WIMP & beyond!

