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What Are Tracks?
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Fission Tracks

(Induced) Fission Tracks

in Mica, TEM
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[Fleischer, Price & Walker '75]

40 MeV argon ions in Mica,
chemical etch + optical
microscopy

[Fleischer, Price & Walker '65]

Spontaneous fission tracks
in apatite, chemical etch +
optical microscopy

[Thomson '16]
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Track Formation Models

[Fleischer, Price & Walker '75]

Fig. 1-1. The atomic character of a particle track in (a) a crystal and (b) a
polymer. In the crystal the damage consists of continuous disorder composed of
vacant lattice sites and of interstitial ions or atoms. In the polymer new chain ends
and other chemically reactive sites are formed. (After Fleischer et al., 71969.)



Track Formation Models

Thermal Spike Model [Toulemonde, Dufour, Meftah, Paumier '00]
Rapid energy dissipation by heat conduction
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Track Formation Criteria

[Fleischer, Price & Walker '65]
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F16. 3. Track registration in muscovite mica. The curves give the calculated
rates of energy loss of various heavy ions in mica as a function of the energy per nu-
cleon. The experimental points indicate the registration behavior in experiments
such as that shown in Fig. 2a (10).



Track Formation Criteria

[Fleischer, Price & Walker '65] [Fleischer, Price & Walker '75]

TaBLE II. Sequence of sensitivities of various materials.
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Any hope for keV recoils?

[Fleischer, Price & Walker '65]
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F16. 3. Track registration in muscovite mica. The curves give the calculated
rates of energy loss of various heavy ions in mica as a function of the energy per nu-
cleon. The experimental points indicate the registration behavior in experiments
such as that shown in Fig. 2a (10).



Alpha Recoil Tracks

A Monte-Carlo calculation of the size distribution of latent
alpha-recoil tracks
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Abstract

This paper proposes a Monte-Carlo method for calculating the time-dependent size distribution of alpha-recoil
tracks in minerals. The results show that, in the case of recoil tracks in phlogopite, produced by the uranium-series
isotopes in the time interval between 0 and 1 Ma, the size distribution comprises two distinct track-populations. The g l. Triangular recoil tracks in a cleaved internal surface of
first has a mean size of ~30 nm and standard deviation of ~5 nm and consists of tracks that are the result of a single  tlogopite mica, etched for 6 min in 40% HF, at 25°C.
alpha decay. The second has a broad range of sizes with a mean of ~125 nm and standard deviation ~50 nm and
consists of tracks that, for the most part, result from complete decay of 2*U and **U to stable 2*°Pb. The first pop-
ulation saturates at around ~1 Ma, whereas the second shows approximately linear growth. On the basis of the present
results, it becomes possible to calculate both the number of recoil tracks intersecting a unit surface of natural minerals
and the interconnectedness of recoil damage as a function of time, which has direct implications for alpha-recoil track
dating of mica and for the prediction of the long-term behaviour of mineral host phases for the disposal of high-level
nuclear waste. © 2001 Elsevier Science B.V. All rights reserved.



. g e
Any hope for keV recoils? e T
25,
s e 2
i . s »:‘ .(i'jx‘ |
0. _ . 35, :
§g- LT Py
. . ) > a s By
Mica irradiated with ~keV/amu ions, S ey
Chemical etch + AFM microscopy 21 R A
a0 o, My S
o o o o w
[Snowden-Ifft & Chan '95] X {m)
Fig. 2. A processed AFM image. The numbers are the heights in
Table 1 A of the deepest pixels in clusters passing a 20 A /4 pix cut.

Summary of data 2rd calculations for the various ions uszd in this experiment
fon  Esergy Calculated Observed Incident S, [Mevg 'cm~2) S, (Mevg™' Ratio(data) Ratio (MC)

(keV] range (A} density density cm™?)

in mica in CR-39

[10%m™2%)  [10%m 2}
R $s1 1094008 14+2 826 715 0.08+ 0.0  0.079 4 0.003
;o 400 5716 1.7+ 0.1 14+7 3086 168 0.134+002 0.111 4 0.004

Si 45 511 1.6 4 01 8+1 734 1791 022+ 003 0238 + 0006

Psi 400 4890 1.0+ 01 8+1 2069 661 0.14 £ 0.03  0.129 £ 0.005
K 65 59 22402 45409 1281 2763 05+ 0.1 0.43 + 0.02
K 200 1543 18402 45409 2167 1900 0.4 +0.1 0.35 + 0.01




Mica irradiated with ~keV/amu ions,
Any hope for keV recoils? | Chemical etch + AFM microscopy

[Hirose+ @JAMSTEC] (see Tue talk)
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Any hope for keV recoils?

[Snowden-Ifft & Chan '95]

Fig. 1. A schematic showing an ion pencirating mica with incident
angle 6. The ion creates Etching Defects (EDs) randomly in
mica’s 10 A layers. If 60 A is remaved from the surface, as
shown, the ctched depth would be 20 A. The last ED is not
v mled until more material is removed from the surface.
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Fluorescent Nuclear Track Detectors: Al,O,:C,Mg

[Akselrod, Akselrod, Benton & Yasuda ‘06]
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Fig. 8. Distribution of fluorescence peak amplitudes for six high energy heavy ions: 65 MeV protons (LET = 1.1 keV/um in water), 143 MeV/n *He
(2.2 keV/um), 290 MeV/n '>C (12.6 keV/um), 367 MeV/n *°Ne (31 keV/um), 500 MeV/n *°Fe (182 keV/um) and 313 MeV/n **Kr (440 keV/um).

No tracks seen for GeV
protons -> estimated threshold

Fig. 5. 3-D reconstruction of a single track from a recoil proton entering .
the crystal at an angle 0 to the normal. The image is composed of eight to ~1 keV/ micron

images obtained by laser scanning at 5 pum increment depths. The
fluorescence images are shown in negative contrast and are semitranspar-

ent for better presentation.
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Fluorescent Nuclear Track Detectors: Al,O,:C,Mg

Doped sapphire
+ fluorescent microscopy

[Akselrod & Kouwenberg ‘18]
LET in H,0, keV/um
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Fig. 30. LET in Al,05:C, Mg versus fluorescence track amplitude. The insert
shows the relation between the fluorescence track amplitude and Z/3, where Z
is the effective charge of the ion and f} is the relativistic ion velocity (Sykora
et al., 2008a).

[Kouwenberg+ ‘18]

Fig. 2. Close-up of FNTDsirradiated with alpha radiation and imaged with
CLSM (A and B) and SIM (C and D). Panels A and C show single images
and panels B and D show the maximum projection of the 3D image stacks.

Scale bars are 2 um. Note that panels A and B show a different field of

view than panels C and D.
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Fluorescent Nuclear Track Detectors: LiF

LiF + fluorescent microscopy

[Bilski & Marczewska ‘17]

LET in H,0 [kevium]  [Bilski+ ‘19]
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Fig. 9. Track intensity vs. LET in LiF. The line represents a linear fit to the
primary beam data points (without He), with parameters a = 1.92, b = 20.25.

Fig. 7. Fluorescent image of the sample irradiated with a broad uncollimated flux of Uncertainty bars not plotted for clarity.

alpha particles acquired at depth of about 2 pm. Irradiation time 1 min, particle
fluence 2.05 x 10° mm 2. Acquisition time 30s. A video showing images acquired
at different focal depth is available.
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Fluorescent Nuclear Track Detectors
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Figure 1. Shown is the overlay of 50 typical cosmic ray neu-
tron (red) and reactor CEvVNS events (blue) in Nal. Vacancies
are marked by disks and tracks created by the primary recoil
are marked by a line.

[Cogswell, Goel & Huber '21] (see Thu talks)
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Figure 2. Shown is the nuclear recoil energy threshold in
Nal for either track-based event selection (dashed lines) or
vacancy-based event selection (solid lines). The bands result
from a +20% variation of the threshold damage energy.

[see also Budnik, Chesnovsky, Slone and Volansky ‘17]
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Fluorescent Nuclear Track Detectors: CaF2

CaF, + fluorescent microscopy

[Gabriela Araujo/PALEOCEENE] (see Thu talk)
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Strain mapping via NV spectroscopy in Diamond

[Marshall+ ‘09, 21, ‘22 (see Daniel Ang’s Tue talk)
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New Track Formation Criteria?

e Are any track formation criteria necessarily readout and material
dependent?

e \What are “etching defects”?

e Is electronic stopping/linear energy transfer (LET) a good proxy?

e Is vacancy density a good proxy?
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Some other open questions

e How do we define the length of a “track™?
e \What is the efficiency of “track” readout?
e \What is the energy resolution?

e Can we do particle ID?

e \What about “track” stability? (partial annealing, ...)

e Which modeling tools are available and how to we adapt/modify
them?
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