Mineral Detectors for Dark Matter

Minerals such as olivine could hold evidence of long-ago collisions between atomic nuclei and dark matter (Olena Shmahalo/Quanta Magazine).

Patrick Stengel (INFN Ferrara)

 $MD\nu DM'24$

Dark matter searches in mineral detectors

What do we (not) know about Dark Matter?

What we (typically) assume

- No E&M interactions
- Must be cold and stable
- Not in the Standard Model

Dark matter searches in mineral detectors

Nuclear recoils induced by elastic WIMP-nucleus scattering

WIMP velocity distribution and induced recoil spectra

Patrick Stengel (INFN Ferrara)

 $MD\nu DM'24$

Mineral detectors used to constrain WIMPs before

Tracks in ancient minerals Solid state track detectors

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Integrate stopping power to estimate track length

Cosmogenic backgrounds suppressed in deep boreholes

Figure: \sim 2Gyr old Halite cores from \sim 3km, as discussed in Blättler+ '18

Depth	Neutron Flux
2 km	$10^6/cm^2/Gyr$
5 km	$10^2/cm^2/Gyr$
6 km	10/cm²/Gyr
50 m	$70/cm^2/yr$
100 m	$30/cm^2/yr$
500 m	$2/cm^2/yr$

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238}\gtrsim 0.01\,{\rm ppb}$
- Ultra-basic rocks from mantle, $C^{238}\gtrsim 0.1\,{\rm ppb}$

Tracks in ancient minerals Problematic b

Problematic backgrounds

Find α -recoils and model radiogenic neutron background

Patrick Stengel (INFN Ferrara)

Projected sensitivity of mineral detectors

Use track length spectra to pick out WIMP signal

Trade-off between read-out resolution and exposure

Summary and outlook

Mineral detectors could probe the nature of Dark Matter

Conventional and novel signatures

- Competitive for heavier WIMPs
- Go to ν floor at smaller m_X
- Composite DM \Rightarrow macro tracks
- Directional WIMP signals today
- Time-varying signals over Gyr

12 / 12

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

1/13

Multiple samples to detect dark disk transit every \sim 45 Myr

 $m_X^{\text{disk}} = 100 \,\text{GeV} \,\, \sigma_{Xp}^{\text{disk}} = 10^{-43} \,\text{cm}^2 \,\, m_X = 500 \,\text{GeV} \,\, \sigma_{Xp} = 5 imes 10^{-46} \,\text{cm}^2$

Distinguish from halo with 20, 40, 60, 80, 100 Myr samples

Systematic uncertainties $\Delta_t = 5\% \ \Delta_M = 0.1\% \ \Delta_C = 10\% \ \Delta_{\Phi} = 100\%$

Patrick Stengel (INFN Ferrara)

 $MD\nu DM'24$

Change number of samples and sample spacing in time

Scattering cross sections \Rightarrow scattering rates

$$\frac{d^2\sigma}{dq^2d\Omega_q} = \frac{d\sigma}{dq^2} \frac{1}{2\pi} \delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0 F(q)^2}{8\pi\mu_{XT}^2 v} \delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right)$$
$$\frac{d^2R}{dE_R d\Omega_q} = 2M_T \frac{N_T}{M_T N_T} \int \frac{d^2\sigma}{dq^2 d\Omega_q} n_X v f(\mathbf{v}) d^3v \simeq \frac{\sigma_0 F(q)^2}{4\pi\mu_{XT}} n_X \hat{f}(\mathbf{v}_q, \hat{\mathbf{q}})$$

Differential cross section

- δ -function imposes kinematics
- σ_0 is velocity and momentum independent cross section for scattering off pointlike nucleus $F(q) \simeq \frac{9 [\sin(qR) - qR \cos(qR)]^2}{(qR)^6}$

Differential scattering rate

- Rate per unit time per unit detector mass for all nuclei
- Convolute cross section with astrophysical WIMP flux

$$\sigma_0^{SI} = \frac{4}{\pi} \mu_{XT}^2 \left[Z f_s^p + (A - Z) f_s^n \right]^2$$

Track length spectra after smearing by readout resolution

6/13

Sensitivity for different targets

Halite Gypsum Sinjarite Olivine Phlogopite Nchwaningite $\begin{array}{c} {\sf NaCl} \\ {\sf Ca}({\sf SO}_4)\cdot 2({\sf H}_2{\sf O}) \\ {\sf CaCl}_2\cdot 2({\sf H}_2{\sf O}) \\ {\sf Mg}_{1.6}{\sf Fe}_{0.4}^{2+}({\sf SiO}_4) \\ {\sf KMg}_3{\sf AlSi}_3{\sf O}_{10}{\sf F}({\sf OH}) \\ {\sf Mn}_2^{2+}{\sf SiO}_3({\sf OH})_2\cdot ({\sf H}_2{\sf O}) \end{array}$

$$\begin{array}{l} C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-10} \ {\rm g/g} \end{array}$$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

Quick aside on data analysis and α -recoil background

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01 \text{ ppb}$ $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Solar ν 's produced in fusion chains from H to He

Figure: Today's flux at Borexino (Nature, 2018) and time dependence of GS metallicity model, 2102.01755

Galactic contribution to ν flux over geological timescales

Figure: Cosmic CC SNR, 1403.0007