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Neutrinos

• Fundamental 
particle


• Abundant 


• Three flavors


• Diverse sources


• Mystery


• Beyond SM
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[Credit: All things neutrino, Fermilab]

Natalia Tapia Arellano  University of Utah  MD DM 24  Jan 08-11⋅ ⋅ ν ⋅



Neutrinos: Solar Neutrinos
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Neutrinos: Solar Neutrinos
• Homestake 1960: Only 

about one-third of neutrinos 
actually showed up in 
detectors. 


• Solar neutrinos can also 
provide direct insight into 
the core of our sun.


• About 100 billion solar 
neutrinos pass through your 
thumbnail every second.


• The Borexino Experiment: 
the sun releases the same 
amount of energy today as it 
did 100,000 years ago.
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Solar Standard Model: Bahcall
• Fundamental tool to 

study Solar activity


• Prediction of fluxes, 
temperature, etc.


• Metallicity: Fraction of 
heavy element to 
hydrogen at the 
Surface.


• Testing SSM: studying 
pressure modes: 
Helioseismology 
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Credit: NASA, Fermilab
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Understand and predict neutrino fluxes



Solar Standard Model: Bahcall
• Discrepancy in results 

from new SSM using 
different  Sun’s 
Metallicity


• Inconsistency between 
photosphere 
abundances AGSS09 
and helioseismic data 
in GS98 sensitive to 
interior composition.


• Standing paradox in 
Solar physics

14

Credit: NASA, Fermilab
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Luminosity 
function!
Solar luminosity and 
neutrino flux 
connected.
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Distribution of the neutrino production in terms of 

radius for each neutrino flux, according to GS98  

Giunti, Kim

CNO (III) cycle of stellar thermonuclear reactions.

Conversion from Hydrogen to Helium.

GS98 prediction of neutrino fluxes
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Paleo Detectors

• DM Searches


• Examine rocks!!
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Billion year ~  y109
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Exposure
 = 0.01 kg Myr


For Conventional 
Detectors


• 10 yr and  kg target mass


For Paleo Detectors:  


• 1 Gyr old sample and O(10) 
mg of sample

ε

103

20
[Xenon 1T: QM, 2020]

 = Target Mass * Integration Timeε
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Chain production of 8B
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Chain production of 8B
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MESA: Modules for Experiments in Stellar Astrophysics
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Tracks
• Track length for recoiling nucleus with Energy 





• The differential cross section for coherent neutrino nucleus  scattering 





• Differential recoil spectrum per unit target mass induced by neutrinos


ER

xT(ER) = ∫
ER

0
dE ( dE

dxT
(E))

−1

dσ
dER

(ER, Eν) =
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F

4π
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mTER

2E2
ν ) F2(ER)
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=
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dΦν

dEν
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Metallicity models
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8B : T24Metallicity Models:


• 8B Neutrinos strong 
dependence on 
Solar Core Tº


• MESA code version 
r12115


• Z/X = 0.0229 for GS 


• Z/X = 0.0181 for 
AGSS 
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Solar neutrino fluxes at Earth, predicted by 
MESA and measured, in units of .


They scale as: (pp) , (7Be) , (8B)  
and (CNO)  

cm−2s−1

1010 109 106

108
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Sinjarite Marine Evaporite 
Materials


• We adopt Uranium 
concentrations of 
0.01 parts per billion 
for MEs

Sinjarite


 


Halite





CaCl2 ⋅ 2(H2O)

NaCl
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Backgrounds:


• Cosmogenic background 
are suppressed beyond 5 
km depth rocks


• Neutron bkg: 10% 
uncertainty

Nchwaningite


UBR: arise from earth’s 
mantle, 0.1 ppb  
concentration


 
Mn2+SiO3(OH) ⋅ H2O

[sources-4A code]
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Results
Different Scenarios 

• We examined in details 
the track length range 
of 15-30 nm


• We use a sample mass 
of 0.1 kg


• Time window of time 
variation: 200 Myr and 
500 Myr
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Track measure 
resolution:


• Small angle X-ray 
scattering can achieve 
15 nm three 
dimensional spatial 
resolution

Rock dating


• Up to 1 Gyr with 
10% uncertainty
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Metallicity sensitivity


• GS98 1Gyr: 



• AGSS09 1Gyr:

(1.63 ± 0.05) × 106

(1.52 ± 0.05) × 106

• Background in a 
10% uncertainty 

case


( ∼ 5) × 105
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Summary

• Solar neutrinos help us understand the behavior of our 
local star.


• Solar Standard Models predict neutrino fluxes.


• Time variation of neutrinos can be recorded in paleo 
detectors, up to  Gyr.


• Sinjarite would be the optimal material to probe Solar 
neutrinos and SSM

∼ 1
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Thank you!
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Including hydrogen
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