Measuring solar neutrinos over Gigayear timescales with Paleo Detectors

Natalia Tapia Arellano \cdot University of Utah \cdot MD ν DM 24 \cdot Jan 08-11

Outline Contents

- Solar Neutrinos
- Paleo Detectors
- ν time evolution
- Results

Outline Contents

Solar Neutrinos

NCHWANINGITE

Neutrinos

- Fundamental particle
- Abundant
- Three flavors
- Diverse sources
- Mystery
- Beyond SM

ELEMENTARY PARTICLES

[Credit: All things neutrino, Fermilab]

Neutrinos: Solar Neutrinos Solar Neutrino Problem

Neutrinos: Solar Neutrinos Solar Neutrino Problem

 Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.

- Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.
- Solar neutrinos can also provide direct insight into the core of our sun.

- Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.
- Solar neutrinos can also provide direct insight into the core of our sun.
- The Borexino Experiment: the sun releases the same amount of energy today as it did 100,000 years ago.

- Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.
- Solar neutrinos can also provide direct insight into the core of our sun.
- The Borexino Experiment: the sun releases the same amount of energy today as it did 100,000 years ago.

Neutrinos: Solar Neutrinos

NASA: Astronomy Picture of the Day, 1998

- Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.
- Solar neutrinos can also provide direct insight into the core of our sun.
- The Borexino Experiment: the sun releases the same amount of energy today as it did 100,000 years ago.

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

- Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.
- Solar neutrinos can also provide direct insight into the core of our sun.
- The Borexino Experiment: the sun releases the same amount of energy today as it did 100,000 years ago.

- Homestake 1960: Only about one-third of neutrinos actually showed up in detectors.
- Solar neutrinos can also provide direct insight into the core of our sun.
- The Borexino Experiment: the sun releases the same amount of energy today as it did 100,000 years ago.

Solar Standard Model: Bahcall

Understand and predict neutrino fluxes

XO/AIA 171 2015-04-20 14:56:24 UT

- Fundamental tool to study Solar activity
- Prediction of fluxes, temperature, etc.
- Metallicity: Fraction of heavy element to hydrogen at the Surface.
- Testing SSM: studying pressure modes: Helioseismology

Solar Standard Model: Bahcall

00/AIA 171 2015-04-20 14:56:24 UT

- Discrepancy in results from new SSM using different Sun's Metallicity
- Inconsistency between photosphere abundances AGSS09 and helioseismic data in GS98 sensitive to interior composition.
- Standing paradox in Solar physics

Credit: NASA, Fermilab

Distribution of the neutrino production in terms of radius for each neutrino flux, according to GS98

THERMONUCLEAR ENERGY PRODUCTION

CNO (III) cycle of stellar thermonuclear reactions. Conversion from Hydrogen to Helium.

Giunti, Kim

Distribution of the neutrino production in terms of radius for each neutrino flux, according to GS98

THERMONUCLEAR ENERGY PRODUCTION

CNO (III) cycle of stellar thermonuclear reactions. Conversion from Hydrogen to Helium.

Giunti, Kim

Outline Contents

Paleo Detectors

NCHWANINGITE

Paleo Detectors

- DM Searches
- Examine rocks!!

Billion year ~
$$10^9$$
 y

 ε = Target Mass * Integration Time

 ε = 0.01 kg Myr

For Conventional Detectors

• 10 yr and 10^3 kg target mass

For Paleo Detectors:

 1 Gyr old sample and O(10) mg of sample

[Xenon 1T: QM, 2020]

Outline Contents

• ν time evolution

NCHWANINGITE

Chain production of 8B

Chain production of 8B

Time evolution of neutrinos

MESA: Modules for Experiments in Stellar Astrophysics

Energy Spectrum

Energy Spectrum

• Differential recoil spectrum per unit target mass induced by neutrinos

$$\left(\frac{dR}{dE_R}\right)_T = \frac{1}{m_T} \int_{E_\nu^{min}} dE_\nu \frac{d\sigma}{dE_R} \frac{d\Phi_\nu}{dE_\nu},$$

Tracks

Metallicity models

Metallicity Models:

- 8B Neutrinos strong dependence on Solar Core T^o
- MESA code version
 r12115
- Z/X = 0.0229 for GS
- Z/X = 0.0181 for AGSS

8B : *T*²⁴

Metallicity models

Metallicity Models:

- 8B Neutrinos strong dependence on Solar Core T°
- MESA code version
 r12115
- Z/X = 0.0229 for GS
- Z/X = 0.0181 for AGSS

Channel	\mathbf{GS}	AGSS	Measurement
$\Phi_{ m pp}$	5.98	6.01	$6.05(1^{+0.003}_{-0.011})$
$\Phi_{^{7}\mathrm{Be}}$	4.95	4.71	$4.82(1^{+0.05}_{-0.04})$
$\Phi_{^{8}\mathrm{B}}$	5.09	4.62	$5.00(1\pm0.03)$
$\Phi_{ m CNO}$	5.12	3.92	$7.0(1^{+0.43}_{-0.29})$

Solar neutrino fluxes at Earth, predicted by MESA and measured, in units of $cm^{-2}s^{-1}$.

They scale as: (pp) 10^{10} , (7Be) 10^{9} , (8B) 10^{6} and (CNO) 10^{8}

Backgrounds:

- Cosmogenic background are suppressed beyond 5 km depth rocks
- Neutron bkg: 10% uncertainty [sources-4A code]

Nchwaningite

UBR: arise from earth's mantle, 0.1 ppb concentration

 $Mn^{2+}SiO_3(OH) \cdot H_2O$

Outline Contents

Results

Results Different Scenarios

- We examined in details the track length range of 15-30 nm
- We use a sample mass of 0.1 kg
- Time window of time variation: 200 Myr and 500 Myr

Track measure resolution:

 Small angle X-ray scattering can achieve 15 nm three dimensional spatial resolution

Metallicity sensitivity

- GS98 1Gyr: $(1.63 \pm 0.05) \times 10^{6}$
- AGSS09 1Gyr: $(1.52 \pm 0.05) \times 10^{6}$

- Background in a 10% uncertainty case
 - $(\sim 5) \times 10^5$

Summary

- Solar neutrinos help us understand the behavior of our local star.
- Solar Standard Models predict neutrino fluxes.
- Time variation of neutrinos can be recorded in paleo detectors, up to $\,\sim\,1$ Gyr.
- Sinjarite would be the optimal material to probe Solar neutrinos and SSM

Summary

- Solar neutrinos help us understand the behavior of our local star.
- Solar Standard Models predict neutrino fluxes.
- Time variation of neutrinos can be recorded in paleo detectors, up to $\,\sim\,1$ Gyr.
- Sinjarite would be the optimal material to probe Solar neutrinos and SSM

Sinjarite

Including hydrogen

Vitagliano, Tamborra, Raffelt

