

Dark Matter & Neutrinos under the Microscope

Alexey Elykov

Institute for Astroparticle Physics (IAP)

www.kit.edu

Dark Matter

Dark Matter: ~ 85% of all matter in the Universe, unknown nature

Dark Matter candidates:

- ♦ Weakly Interacting Massive Particles (WIMPs), mass ≈ 10 GeV few TeV
- SuperWIMPs, WIMPzillas, "fuzzy" Dark Matter, Axions, ALPs ... etc...

Paths for Dark Matter detection

Institute for Astroparticle Physics

2 Alexey Elykov

Neutrinos

- Properties are still largely unknown
- Can shed light on fundamental open questions
- ✤ Large range of energies
- Astrophysical messengers (history & evolution):
 - ≻ Sun
 - > Supernovae
 - > Cosmic-rays
 - ➤ Galactic & extragalactic
- ✤ Geoneutrinos

DOI: 10.1103/RevModPhys.92.045006

XENON dark matter direct detection experiments at Laboratori Nazionali del Gran Sasso (LNGS)

Located at Laboratori Nazionali del Gran Sasso, Italy ~1500 m rock overburden (3600 m.w.e.)

12 countries 27 institutions 170+ scientists

Track & Damage Features Formation

- Energy loss in solid materials due to :
 - Electronic stopping (off electron clouds)
 - Nuclear stopping (off nuclei)
 - Nuclear recoils down to 0.1 1 keV

$$x_T(E_R) = \int_0^{E_R} \left| \frac{dE}{dx_T} \right|^{-1} dE$$

Ancient Natural Crystals - Paleo-Detectors

Karlsruhe Institute of Technology

Ancient minerals - look into the past

- Natural minerals good SSNTDs
- Tracks nuclear recoils induced by Dark Matter & Neutrinos
- Preserve tracks for Myr/Gyr
- Accessible, relatively cheap

- Small samples but Myr/Gyr exposure
- Neutrinos guaranteed signal/background

Paleo-Detectors Now

- Worldwide interest novel emerging research field
- Growing amount of publications in last ~ 5 yr
- White paper in "Physics of the Dark Universe" (editor's invitation)
 - \succ 67 authors, 46 institutions, 113 pages

Physics of the Dark Universe Volume 41, August 2023, 101245

Mineral detection of neutrinos and dark matter. A whitepaper

Sebastian Baum¹ A Markov Stengel² M, Natsue Abe³, Javier F. Aceveda⁴, Gabriela R. Araujo^{5 a}, Yoshihiro Asahara⁶, Frank Avignone⁷, Levente Balogh⁸, Laura Baudis⁵, Yilda Boukhtouchen⁹, Joseph Bramante^{9 10}, Pieter Alexander Breur⁴, Lorenzo Caccianiga¹¹, Francesco Capozzi¹², Juan I. Collar¹³, Reza Ebadi^{14 15}, Thomas Edwards¹⁶, Klaus Eitel¹⁷, Alexey Elykov¹⁷, Rodney C. Ewing¹⁸, Katherine Freese^{19 20}, Audrey Fung⁹, Claudio Galelli²¹, Ulrich A. Glasmacher²², Arianna Gleason⁴, Noriko Hasebe²³, Shigenobu Hirose²⁴, Shunsaku Horiuchi^{25 26}, Yasushi Hoshino²⁷, Patrick Huber^{25 a}, Yuki Ido²⁸, Yohei Igami²⁹, Norito Ishikawa³⁰,

Paleo-Detectors - Why Now?

✤ Interest worldwide

- Unprecedented advances in nm-scale microscopy & manipulation techniques
- Computational advances simulations, data processing
- Machine learning

ion track. (DOI: 10.1557/jmr.2016.418)

2016 : Ion track morphology at different depths in the material. (DOI: 10.1557/jmr.2016.418)

11 Alexey Elykov

Institute for Astroparticle Physics

Why at KIT?

Karlsruhe Institute of Technology (KIT)

- ***** KIT is one of the major scientific research institutes in Europe
 - > ~9,500 scientific & other workers
 - > ~24,000 students on various levels
- ***** Multiple Research Topics
 - > Among others: Energy, materials, information, geology ...

Particle & Astroparticle Physics

- Theoretical & experimental collider physics
- > Theoretical astroparticle physics
- Pierre Auger Observatory, IceCube
- > XENONnT, KATRIN
- Expertise in electronics, simulations, hardware R&D, data analysis & more ...

Why at KIT? - Microscopy

Unique combination of different microscopy facilities & expertise

- ➤ Cutting edge nm-scale & µm-scale microscopy
- ➤ Helium Ion Microscopy HIM
 - Resolution: ≤ 0.35 nm
 - FoV: 900 μm 100 nm
- Transmission Electron Microscopy (TEM)
 - Resolution: << 1 nm</p>

> nanoCT (3D)

- X-ray energy: 5.4 keV
- FoV: 16 μm (HRES), 65 μm (LRES)
- Resolution: 50 100 nm
- Non-destructive

Many other microscopy facilities ...

Institute for Astroparticle Physics

Why at KIT? - Geology

- KIT Institute of Applied Geosciences
 - > Expertise in geochemistry
 - ➤ LA-ICP-MS analysis
- Cooperation with geologists from Heidelberg University

Want to tie the different aspects together...

- **KIT** Unique combination of different facilities & expertise
 - ➤ Cutting edge nm-scale & µm-scale microscopy
 - Dark Matter & Neutrino physics
 - Numerical simulations, data acquisition & analysis
 - ML identification of minute structures in images
- Previous work: HEiKA 2019 2020, K. Eitel & U. Glasmacher
 - > "Searching for Dark Matter particle signatures with salt minerals as Palaeo-Detectors"

- **KIT** Unique combination of different facilities & expertise
 - Cutting edge nm-scale & µm-scale microscopy
 - Dark Matter & Neutrino physics
 - > Numerical simulations, data acquisition & analysis
 - ML identification of minute structures in images
- Previous work: HEiKA 2019 2020, K. Eitel & U. Glasmacher
 - > "Searching for Dark Matter particle signatures with salt minerals as Palaeo-Detectors"

From 2023 - onward:

- Strong support by KIT IAP for a long-term Paleo-Detectors project
- KCETA Seed funding for preliminary studies
- Establishing small-scale lab for paleo-detector studies
- Experimental feasibility studies

- **GOAL I:** Establish technology for track imaging & analysis in selected minerals *
- **GOAL II:** Establish a realistic list of paleo-detector candidate minerals *
- **GOAL III:** Deepen cooperation with microscopy & geology experts *
- Cooperating with microscopy experts from KIT & geologists from Heidelberg *

Alexey Elykov 17

Mica - samples provided by U. Glasmacher

1. Mineral Selection & Preparation

- > Range of minerals sensitivity predictions, input from geology, microscopy
- Muscovite (blank), Biotite (irradiated with Xe ions) as a starting point

2. Calibration - Track Production

- Local lab anneal samples
- > ²⁵²Cf (n ~2.2 MeV), ²⁴¹AmBe (n 2-10 MeV) nm & µm-scale damage features
- 3. Mineral & Track Imaging

Use & compare several microscopy techniques with nm- & µm-scale resolution

- 4. Analysis & Characterization
 - Identify & classify observed tracks using ML algorithms
 - Correlate morphology of tracks with deposited energy

- 1. Mineral Selection & Preparation
 - Range of minerals sensitivity predictions, input from geology, microscopy
 - Muscovite (blank), Biotite (irradiated with Xe ions) as a starting point
- 2. Calibration Track Production
 - Local lab anneal samples
 - > ²⁵²Cf (n ~2.2 MeV), ²⁴¹AmBe (n 2-10 MeV) nm & µm-scale damage features

3. Mineral & Track Imaging

Use & compare several microscopy techniques with nm- & µm-scale resolution

4. Analysis & Characterization

- Identify & classify observed tracks using ML algorithms
- Correlate morphology of tracks with deposited energy

Institute for Astroparticle Physics

Software & Simulations

✤ paleoKIT

- > Python-based
- Imaging & physics analysis tools
- > **Ongoing**: SRIM sims of selected minerals
- > **TODO**: Sensitivity of select minerals

✤ paleoSIM

- GEANT4 simulations
- ➤ Ongoing: neutron irradiation studies using ²⁵²Cf, ²⁴¹AmBe
- TODO: Ion & n-induced track studies

Mineral Imaging - nanoCT

First calibration studies

- Devise best practices for preparing samples
- Full 3D profile of the imaged sample
- ✤ 64 nm resolution per pixel for O(10)um samples
 - Image inner structure prior to high res imaging natural damage, cracks
 - > Can resolve substructure & μ m-sized tracks/damage features?

Institute for Astroparticle Physics

21 Alexey Elykov

Mineral Imaging - nanoCT

- Imaging < 1 µm features in crudely prepared Muscovite samples can definitely improve *
- Preliminary results are interesting & promising *

Mineral Imaging - TEM

After tests with "blank" Muscovite samples will move to Biotite & irradiated Muscovite samples

Summary & Outlook

- Perfect place for a mineral-based detector project
- Preliminary studies ongoing
 - Software development for analysis & calibration studies
 - Imaging studies with microscopy experts
 - > Want to identify & test realistic mineral candidates
 - > Only just crossed the starting line, but great potential!

Hope to see you in the next MDvDM meeting

& show you some results.

Microscopy & Geology

alexey.elykov@kit.edu, klaus.eitel@kit.edu

Institute for Astroparticle Physics

