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Pioneering DM search using muscovite mica by
Snowden-Ifft et al. 1995

107 i
(-
oo
10%F | % g
VOLUME 74, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MAY 1995 \ \ R
~ by S
Ng 1020 L \ i\\‘ //
. . . . = VN
Limits on Dark Matter Using Ancient Mica £ VN e S
8 31 AN \\;/
. % 107 —
D. P. Snowden-Ifft,* E. S. Freeman, and P. B. Price* g
Physics Department, University of California at Berkeley, Berkeley, California 94720 — 169
(Received 20 September 1994) 1032} —
The combination of the track etching method and atomic force microscopy allows us to search for |77 *si
weakly interacting massive particles (WIMPs) in our Galaxy. A survey of 80720 um? of 0.5 Gyr old 10 ‘ ‘ | - S
muscovite mica found no evidence of WIMP-recoil tracks. This enables us to set limits on WIMPs ) 10 100 1000 10000
which are about an order of magnitude weaker than the best spin-dependent WIMP limits. Unlike other WIMP Gev/e?
detectors, however, the mica method is, at present, not background limited. We argue that a background mass (GeV/e')

may not appear until we have pushed our current limits down by several orders of magnitude. FIG. 4. Exclusion curves for each of the main constituent

nuclei of mica. For a given mass, WIMPs with cross sections

PACS numbers: 95.35.+d, 14.80.Ly, 29.40.Ym, 61.72.Ff above these curves are ruled out at the 90% confidence level.

 Snowden-Ifft et al. set one of the strictest limits on WIMPs cross section at that time, with
an exposure of just 1e-6 tonne year.

* Following the methodology established by Snowden-Ifft et al., DMICA targets an exposure
of 1 tonne year, equivalent to a scanning area of 800cmA2.



How mica works as detectors
In the search for DM



Nuclear recoil events are recorded as “latent” tracks in mica

TRIM simulation of an oxygen ion (10 keV) traveling through mica
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“Latent” tracks are series of atomic vacancies and invisible to microscopes.



Etching reveals latent tracks near cleavage in mica as pits

Cleave Etch with HF

* melts over

_ : a thickness of 10 nm
A

* Pits of several microns in size and nanometers in depth form at track sites.
» To effectively use mica as DM detector, the relationship between pit formation and
recoil energy must be established.



Pit formation-recoil energy relation is examined through
ion irradiation experiments varying ion species/energies
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with natural tracks
removed by annealing

* |rradiating keV/u energy ions to simulate nuclear recoil in dark matter scattering



Larger stopping power results in higher pit formation efficiency
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Track etch model explaining pit formation efficiency
(Snowden-Ifft and Chan 1995)

Mica layer
(1nm)

Low stopping power

low probability of defect formation

High stopping power
high probability of defect formation

parameter!

lenergy
Probability of defect formation in a certain layer: P(E;k) =1 —exp (—kS(E))

Tstopping power



Track etch model explaining pit formation efficiency
(Snowden-Ifft and Chan 1995)

Low stopping power High stopping power
low probability of defect formation high probability of defect formation
Layers dissolved i B T
by etching = M _shallowpit | no pits .
. Z 0 \ 2 2

» Pit depth is the number of defects attacked by the etchant.
* The model predicts the observed pit depth histogram from the recoil energy spectrum.



alpha recoil tracks (ARTs), the most prevalent background

a \ Snowden-Ifft et al. 1995

alpha recoil track
a chain of tracks
from alpha decays



How to differentiate alpha recoil tracks

cleave Etch with HF

unpaired paired
pitl pits

e Snowden-Ifft et al. (1995) found that paired-pits
histogram shows zero for ARTs but a peak for
neutron scattering tracks in the 40-64Aa bin.
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Limits on dark matter from 80,720um”2 mica scan based on the
null result in the smallest bins
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FIG. 3. (a) The summed etched depths of tracks recorded in 103 - s '
a 80720 um? scan of 0.5 Gyr old muscovite mica. No events 1 10 100 1000 10000

appear between our cutoff of 40 and 64 A (shown with a dashed )
vertical line). (b) The solid line shows the summed depths of WIMP mass (GeV/c”)
etched neutron-recoil tracks. The dashed line shows the results
of a MC program of these data. In both the real and MC data
a large fraction of the events appear in the 40—64 A gap.

FIG. 4. Exclusion curves for each of the main constituent
nuclei of mica. For a given mass, WIMPs with cross sections
above these curves are ruled out at the 90% confidence level.

Snowden-Ifft et al. 1995



Sensitivity projection for DMICA
using paleoSpec/paleoSens



Pit depth histogram predicted using paleoSpec

Monte Carlo simulations
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« 234Th recoiling tracks are not considered due to undetermined parameters in
the etch model.



Exclusion curve derived for DMICA’s target exposure of 1 ton yr

Likelihood ratio test Hirose et al. in prep
40-64Aa Pit depth histogram using paleoSens 90% Confidence exclusion curve
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« High-mass end of the curve of DMICA could be significantly larger than that
of the XENON1T experiment.



Impact of 234Th recoil on sensitivity projection

Likelihood ratio test

40-64Aa Pit depth histogram using paleoSens 90% Confidence exclusion curve
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e For 234Th recoil, pit formation efficiency is assumed to be 100%.
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High surface area-to-volume ratio in DMICA enables search for
extremely heavy dark matter

= Number of DMs Passing through a Detector with Surface A during ¢t > 1

= Upper Limit on Detectable DM Mass
Exposure (Mt) x Surface Area per Volume (A/V)

_ My 18 Mt AV
XENONLT: (GeV) <10 (1ton-yr) ((1m)_1

_ My 96 Mt AV
DMICA: (GeV) <10 (1ton-yr) <(1Onm)—1

XENON1T
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How can we achieve the target
exposure of 1 ton year?



Using AFM for mica scan restricts DM search throughput

cleave Etch with HF Scanning with AFM
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« Generally, AFM involves a compromise between accuracy and scanning speed.

« Using optical profiler, through its non-contact measurement, significantly
enhances mica scan throughput.




Pit measurement using an optical profiler
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DMICA has tentatively processed mica of 524,765 um”2, 6.5x
Snowden-Ifft et al.

DMICA: 524,765 um”2 scan

S den-Ifft et al. 1995: 80,720 um”2 scan
(1.5 min./6.5e-6 ton yr=0.45yr / 1 ton yr) nowden-iit et a Hm
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etched neutron-recoil tracks. The dashed line shows the results
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Summary

 DMICA targets a 1-ton-year exposure in DM search in mica.

 We employ the practical methodology established by Snowden-Ifft et al. (1995),
substituting AFM with optical profiler for rapid mica scanning.

* The projected sensitivity of DMICA assessed using paleoSens/paleoSpec is
about 3 orders of magnitude worse than XENON1T.

« Given our tentative processing of mica, 6.5 times greater than that achieved by
Snowden-Ifft et al. (1995), we anticipate reaching the targeted exposure within
a year.






Strategy to overcome alpha recoil backgrounds

e 8-chained tracks = make the gap in the smallest bins wider by
Increasing etch time

e 234Th single tracks — construct an appropriate track etch model
by conducting irradiation experiments of heavy and energetic ions

Scan area = 524765 um~”™2
No deconvolution (original)
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Snowden-Ifft, Freeman, and Price Reply: The preced-
ing Comment [1] by Collar brings up several interesting
points which need to be considered when using ancient
mica to set limits on dark matter [2]. The first considers
a potential background from 2*Th recoiling from the first
decay of **®U. Its range is similar to that of WIMP re-
coils, and a fraction ~T%7},/T*}), =~ 10743 of U de-
cays would stop at ***Th. We, however, observed no
matched etched pits whose summed depth was larger than
64 A. Furthermore, the requirement that each etch pit be
at least 20 A deep places a lower bound of 40 A on the
summed depth. Our limits resulted from no events having
been observed in this gap. To estimate the background of
recoiling 2** Th that fall in this gap one must use the correct
etching model [3]. Collar uses a now discounted model.
According to this new etching model [3] the observed den-
sity of etched pits in the gap resulting from these recoils is
given by
p = N(n2) (T%),/T*),) (P/2)

X [(d/P)* — 4dt/P* + 41*/P?],
where d is the maximum summed depth in the gap, 64 A, P
is the range of the 2** Th recoil, 290 A, and ¢ is the thresh-
old depth for an etched pit on one surface, 20 A. We mea-
sured the uranium density for our mica to be N = (1.7 X
107 (9 X 10*?/cm?) = 1.5 X 10'? atoms/cm?. Us-
ing these numbers we estimate a background from ***Th
at p = 0.5/cm?. Since we have currently scanned only
8 X 10™* cm?, we expect to be able to improve our lim-

its by at least a factor of 2500 before running into this
background. Further improvements are possible because

the spectrum of summed depths for these events differs
markedly from that for WIMP recoils. As discussed in our
paper, a much more serious threat comes from fast neutrons
from U fission in the rock surrounding the mica. Finally,
looking for tracks with etched depths greater than 500 A,
as suggested by Collar [4], is difficult because the flux dis-
tribution of WIMP’s and the incoherence of the momentum
transfer severely limit the number density of recoils which
could produce such large etched pits.

We agree with Collar that the technique cannot be used
to observe neutrinos from stellar collapse and support his
suggestion that it could be used to place limits on clumps
of dark matter.

D.P. Snowden-Ifft, E.S. Freeman, and P.B. Price
Physics Department
University of California at Berkeley
Berkeley, California 94720
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In microscopy, the PSF (Airy pattern) can be approximated with a Gaussian

profile having a variance of (e.g., Zhang et al. 2007)

A
o~ 0.22 (M) = 0.22 um = 1.27 pixel,

where NA = 0.55 and A = 0.55 um are applied.
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A JAMSTEC
< will host the next MDvDM meeting

in Yokohama, Japan
tentative schedule: May 20-23, 2025
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