Modification of Quark-Gluon Distributions in Nuclei by Correlated Nucleons Pairs

Andrew Denniston (MIT)

In Collaboration with: Tomas Jezo, Aleksander Kusina, Fred Olness, Or Hen and nCTEQ Collaboration

June 21st, 2023

Quarks in the Nucleus

1.2

Segarra PRD (2021)

Quarks in the Nucleus

Cause of the EMC Effect?

Traditional Nuclear Effects

Medium Modification

Cause of the EMC Effect?

Medium Modification

Cause of the EMC Effect?

Reactions

All Nucleons Modified Approach

$$f_i^A(x) = \frac{Z}{A} f_i^{p(A)}(x) + \frac{A - Z}{A} f_i^{n(A)}(x)$$

All Nucleons Modified Approach

Depend on A

$$f_i^A(x) = \frac{Z}{A} f_i^{p(A)}(x) + \frac{A - Z}{A} f_i^{n(A)}(x)$$

All Nucleons Modified Approach

$$xf_i^{p(A)}(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

Kovarik PRD (2015)

Kovarik PRD (2015)

 Pairs with small separation

- Pairs with small separation
- High relative momentum compared to k_F

- Pairs with small separation
- High relative momentum compared to k_F
- Significant fraction of the nuclear spectral function

- Pairs with small separation
- High relative momentum compared to k_F
- Significant fraction of the nuclear spectral function
- Correlated with the EMC Effect

Schmookler Nature (2019)

Comparing SRCs with the EMC Effect

Schmookler Nature (2019)

Comparing SRCs with the EMC Effect

Comparing SRCs with the EMC Effect

23

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + \frac{C_p^A}{f_i^{SRC p}(x)} \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + \frac{C_p^A}{L_p^p(x)} f_i^{SRC p}(x) \right] +$$

$$\frac{A-Z}{A} \left[(1-C_n^A) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

Depend on A

SRC Abundancies

A

Free Nucleons SRC Nucleons

$$f_i^A(x) = \frac{Z}{A} \left[\left(1 - C_p^A \right) f_i^p(x) + C_p^A f_i^{SRC p}(x) \right] + \frac{A - Z}{A} \left[\left(1 - C_n^A \right) f_i^n(x) + C_n^A f_i^{SRC n}(x) \right]$$

 $f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_i^p(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_i^p(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$

Details of Fit:

- 1. Minimize χ^2
- 2. Cut out non-DIS kinematics
- 3. Satisfy Sum Rules
- 4. Full Theoretical Calculations
- 5. DGLAP Evolve PDFs
- 6. All PDFs are defined for $x \in (0,1)$

$$\int_{0}^{1} dx \, x f_{i}^{A}(x,Q) = 1 \qquad \int_{0}^{1} dx \, f_{u_{v}}^{A}(x,Q) = \frac{A+Z}{A} \qquad \int_{0}^{1} dx \, f_{d_{v}}^{A}(x,Q) = \frac{A+N}{A}$$

$$F_2^{A,Z}(x,Q) = \sum_i C_i(x,Q) \otimes f_i^{A,Z}(x,Q)$$

World Data to Fit:

Q > 1.3 GeV W > 1.7 GeV

35

Fit Over Wide x_B Range

Drell-Yan and W Production are Well Described

Fit Result:

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_i^p(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$

How Many SRCs do we expect?

How Many SRCs do we expect?

Nuclear Physics Extracted from Parton Measurements

Beyond the SRC-EMC Relation

Beyond the SRC-EMC Relation

Beyond the SRC-EMC Relation

$f_i^p(x)$ $f_i^n(x)$: **Fixed** from Free Proton PDF

 $xf_i^p(x) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$

Nuclear PDF

Nuclear PDF and SRC PDF

 O^2 10 GeV²

Nuclear PDF and SRC PDF

 $Q^2 = 10 \ GeV^2$

Structure of SRC Nucleons

Tagged Experiments Might Measure this Observable

Summary

• SRC Parameterization produces a good fit.

$\chi^2/N_{ m data}$	$rac{\chi^2_{ m tot}}{N_{ m DOF}}$
Traditional	0.85
SRC	0.80

Summary

- SRC Parameterization produces a good fit.
- Nuclear physics extracted from parton measurements.

Summary

- SRC Parameterization produces a good fit.
- Nuclear physics extracted from parton measurements.
- The SRC Structure is heavily modified.

End

Extra

Proton-Neutron Pairs Dominate

Equal number of SRC protons and neutrons.

Cut out data with non-DIS Kinematics

Segarra PRD (2021)

SRC Measurements

Fitting to World Data

Segarra PRD (2021)

Enforcing pn-dominance does <u>not</u> affect the results of the fit.

Enforcing pn-dominance does <u>not</u> affect the results of the fit.

Nuclear Dependance

Segarra PRD (2021)