Precision Measurement of the Neutron Asymmetry $A_{1}{ }^{n}$ at Large Bjorken x at 12 GeV JLab

Mingyu Chen
University of Virginia
June 21, 2023

Outline:

1. $A_{1}{ }^{n}$ at High $x_{B j}$ Region
2. Experimental Setup and Status
3. Polarized ${ }^{3} \mathrm{He}$ Target Performance
4. Preliminary Asymmetry Results
5. Summary

Longitudinal Virtual Photon Asymmetry A

- $Q^{2}=4$-momentum of virtual photon squared
- $v=$ Energy transfer
- $\theta=$ Scattering angle
- $x=\frac{Q^{2}}{2 M v}=\begin{aligned} & \text { Fraction of nucleon momentum } \\ & \text { carried by the struck quark }\end{aligned}$

$$
A_{1}=\frac{g_{1}-\frac{(2 M x)^{2}}{Q^{2}} g_{2}}{F_{1}}=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\sigma_{1 / 2}+\sigma_{3 / 2}}
$$

$$
\begin{array}{ll}
A_{1}=\frac{1}{\left(E+E^{\prime}\right) D^{\prime}}\left[\left(E-E^{\prime} \cos \theta\right) A_{\|}-\frac{E^{\prime} \sin \theta}{\cos \phi} A_{\perp}\right] \\
A_{\|}=\frac{\sigma_{\downarrow \uparrow}-\sigma_{\uparrow \uparrow}}{\sigma_{\downarrow \uparrow}+\sigma_{\uparrow \uparrow}} \\
A_{\perp}=\frac{\sigma_{\downarrow \rightarrow}-\sigma_{\uparrow \rightarrow}}{\sigma_{\downarrow \rightarrow}+\sigma_{\uparrow \rightarrow}} & D^{\prime}=\frac{(1-\epsilon)(2-y)}{y[1+\epsilon R]}
\end{array}
$$

- Angular kinematics for polarized electron scattering

Goals for $A_{1}{ }^{\mathrm{n}}$ Experiment

- Precisely measure the neutron spin asymmetry $A_{1}{ }^{n}$ in the far valence domain ($0.61<x<0.77$).
- Explore the Q^{2} dependence of $\mathrm{A}_{1}{ }^{n}$ with large x value.
- After combining with proton data (CLAS12), extract polarized to unpolarized parton distribution function (PDF) ratios $\Delta u / u(\Delta d / d)$ for large x region.
- Give more insights on understanding the spin structure of nucleon.

	$\frac{F_{2}^{n}}{F_{2}^{n}}$	$\frac{d}{u}$	$\frac{\Delta d}{\Delta u}$	$\frac{\Delta u}{u}$	$\frac{\Delta d}{d}$	A_{1}^{n}	A_{1}^{p}
DSE-1	0.49	0.28	-0.11	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	-0.07	0.88	-0.33	0.34	0.88
$0_{[u d]}^{+}$	$\frac{1}{4}$	0	0	1	0	1	1
NJL	0.43	0.20	-0.06	0.80	-0.25	0.35	0.77
SU(6)	$\frac{2}{3}$	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{5}{9}$
CQM	$\frac{1}{4}$	0	0	1	$-\frac{1}{3}$	1	1
pQCD	$\frac{3}{7}$	$\frac{1}{5}$	$\frac{1}{5}$	1	1	1	1

Table 1: Predictions for the $\mathrm{x}=1$ value of various models. From Craig D. Roberts et al $10.1016 / \mathrm{j}$.physletb.2013.09.038

Polarized and sea quark PDFs for $\mathrm{Q}^{2}=10 \mathrm{GeV}^{2}$ from the NNPDFpoll.1 parameterization

See Nocera ER, et al. Nucl. Phys. B887:276 (2014).

Previous Results for $A_{1}{ }^{n}$ and PDF

Parno et al., Phy Let B DOI: 10.1016/j.physletb.2015.03.067 X. Zheng et al., PRL 92, 012004 (2004); PRC 70, 065207 (2004)

Experimental Setup

Electron Beam:

Kine	Spec	E_{b} GeV	E_{p} GeV	θ (o)	beam time (hours)
$\Delta(1232)$	SHMS	2.17	-1.79736	8.5	4.0
Elastic	SHMS	2.17	-2.12860	8.5	8.0

- $\mathrm{E}_{\text {beam }}=2.17 \mathrm{GeV}$ (1-pass commission)
- $E_{\text {beam }}=10.38 \mathrm{GeV}$ (5-pass DIS production)

Kine	Spec	E_{b} GeV	E_{p} GeV	θ (o)	e^{-}production (hours)	e^{+}prod. (hours)	Tot. Time (hours)
DIS							
3	HMS	10.38	2.90	30.0	88.0	0.0	88.0
4	HMS	10.38	3.50	30.0	511.0	0.0	511.0
B	SHMS	10.38	3.40	30.0	511.0	4.0	515.0
C	SHMS	10.38	2.60	30.0	88.0	4.0	92.0

- Circular beam raster with $2.0-2.5 \mathrm{~mm}$ radius
- < 50 ppm charge asymmetry (average over ~ 1-2 hr run)
Polarized 3 He target:
- 3 He production cell (40 cm)
- 55-60\% polarization without beam
- Reached over 50\% polarization with 30 uA beam current (doubles performance compare to 6 GeV era)
- About 3\% uncertainty for polarimetry

Spectrometers:

- High Momentum Spectrometer (HMS)
- Super HMS (SHMS)
- $\mathrm{A}_{1}{ }^{n}$ production run begins on Jan $12^{\text {th }}, 2020$ and ended on March $13^{\text {th }}, 2020$.

Page:5

Polarimetry for ${ }^{3} \mathrm{He}$ in Target Cell

EPR

Production Cell Performance

(for targets used in $\mathrm{A}_{1}{ }^{\mathrm{n}}$ experiment)

$\mathrm{A}_{1}{ }^{\mathrm{n}}$ Experiment Target Performance

- Two production cells used
- Polarization: maximum reach $60+\%, 55 \%$ in beam

$$
P_{T C}^{r u n_{n}}=P_{T C}^{\text {init }}+\left(P_{T C}^{\text {end }}-P_{T C}^{\text {init }}\right) \frac{T_{r \text { nan }}^{\text {midpoint }}-T_{n m r}^{\text {init }}}{T_{n m r}^{\text {end }}-T_{n m r}^{\text {init }}}
$$

- Interpolate P_{t} to each production run with run time

Target Polarization during A1n Experiment

By definition: N^{+}
$\mathrm{A}_{\mathrm{para}}:{ }^{3} \mathrm{He}$ Elastic Asymmetries
should describe the \# of incident e^{-}whose spin is anti-\| to the ${ }^{3} \mathrm{He}$

$$
A_{\|}=\frac{\sigma^{\downarrow \pi}-\sigma^{\uparrow \Uparrow}}{\sigma^{\downarrow \pi}+\sigma^{\uparrow \Uparrow}}
$$ target spin

SHMS Elastic Runs

e^{-}beam spin direction:

Period	IHWP = IN	IHWP = OUT	${ }^{3} \mathrm{He}$ spin direction						
1-pass (Dec. 2019) (elastic + delta) 5-pass (DIS) (thru SHMS 10354, HMS 3162) 5-pass (DIS) (SHMS 10355+, HMS 3163+)	UPSTREAM (\vec{e}^{-}anti- $\\|{ }^{3} \overrightarrow{\mathrm{He}}$) (\vec{e}^{-}anti- $\\| l$ beam direction) pass DOWNSTREAM $\left(\vec{e}^{-} \\|^{3} \overrightarrow{H e}\right)$ ($\vec{e}^{-} \\|$beam direction) UPSTREAM (\vec{e}^{-}anti- $\\|{ }^{3} \overrightarrow{H e}$) (\vec{e}^{-}anti- $\\|$beam direction)		180° : DOWNSTREAM 90° : BEAM LEFT 180° :DOWNSTREAM 90° : BEAM LEFT 180° : DOWNSTREAM 90° : BEAM LEFT						

SHMS Elastic Runs:
${ }^{3} \mathrm{He} @ 180^{\circ}$
$\mathrm{E}_{\mathrm{p}}=\mathbf{- 2 . 1 2 8 6 ~ G e V , ~} 8 . \mathbf{5}^{\circ}$

- ${ }^{3} \mathrm{He}$ target spin direction fixed
- Incident e^{-}spin direction (relative to its momentum)
changes with IHWP state, Wien-flip, and pass change \rightarrow imperative to keep N^{+}, N^{-}consistent!
- Credit to Melanie Cardona (Temple)

By definition: N^{+}should describe the \# of incident e^{-}whose spin is anti- $\|$ to the beam direction, and the scattered e^{-}being detected on the same side of the beam as that to which the ${ }^{3} \mathrm{He}$ spins are pointing:
$A_{\perp}=\frac{\sigma^{\downarrow \Rightarrow}-\sigma^{\uparrow \Rightarrow}}{\sigma^{\downarrow \Rightarrow}+\sigma^{\uparrow \Rightarrow}}$
(beam left \rightarrow SHMS!)

$\mathrm{A}_{\text {perp }}:{ }^{3} \mathrm{He} \Delta(1232)$ Asymmetries

SHMS Delta Runs

SHMS $\boldsymbol{\Delta}$ (1232) Runs:
${ }^{3} \mathrm{He} @ 90^{\circ}$
$\mathrm{E}_{\mathrm{p}}=\mathbf{- 1 . 7 5 8 3} \mathbf{~ G e V}, 8 . \mathbf{5}^{\circ}$

- Credit to Melanie Cardona (Temple)

Asymmetry $\mathrm{A}_{1}^{3 \mathrm{He}} A_{1}=\frac{A_{\|}}{D(1+\eta \xi)}-\frac{\eta A_{\perp}}{d(1+\eta \xi)}$

Note:

- Subscript "DIS" for W>2 GeV cut applied

Asymmetry $\mathrm{A}_{1}{ }^{3 \mathrm{He}} A_{1}=\frac{A_{\|}}{D(1+\eta \xi)}-\frac{\eta A_{\perp}}{d(1+\eta \xi)}$

Note:

- Subscript "all" for no Wcuts

Summary

- The $A_{1}{ }^{n}$ experiment (E12-06-110) is a flag-ship, high impact experiment which will give more insights on understanding the spin structure of nucleon.
- For the first time, install the upgraded polarized 3 He target for 12 GeV era in JLab Hall C. The target reached the expected performance with over 50% 3He polarization in 30 uA electron beam.
- After combining with precision proton data (CLAS12), the high-precision neutron data will allow us to extract polarized to unpolarized parton distribution function (PDF) ratios $\Delta u / u(\Delta d / d)$ for large x region.

Analysis Flow Chart

Acknowledgments

People

D. Androic, W. Armstrong, T. Averett, X. Bai, J. Bane, S. Barcus, J. Benesch, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, G. Cates, J-P. Chen, J. Chen, M. Chen, C. Cotton, M-M. Dalton, A. Deur, B. Dhital, B. Duran, S.C. Dusa, I. Fernando, E. Fuchey, B. Gamage, H. Gao, D. Gaskell, T.N. Gautam, N. Gauthier, C.A. Gayoso, O. Hansen, F. Hauenstein, W. Henry, G. Huber, C. Jantzi, S. Jia, K. Jin, M. Jones, S. Joosten, A. Karki, B. Karki, S. Katugampola, S. Kay, C. Keppel, E. King, P. King, W. Korsch, V. Kumar, R. Li, S. Li, W. Li, D. Mack, S. Malace, P. Markowitz, J. Matter, M. McCaughan, Z-E. Meziani, R. Michaels, A. Mkrtchyan, H. Mkrtchyan, C. Morean, V. Nelyubin, G. Niculescu, M. Niculescu, M. Nycz, C. Peng, S. Premathilake, A. Puckett, A. Rathnayake, M. Rehfuss, P. Reimer, G. Riley, Y. Roblin, J. Roche, M. Roy, M. Satnik, B. Sawatzky, S. Seeds, S. Sirca, G. Smith, N. Sparveris, H. Szumila-Vance, A. Tadepalli, V. Tadevosyan, Y. Tian, A. Usman, H. Voskanyan, S. Wood, B. Yale, C. Yero, A. Yoon, J. Zhang, Z. Zhao, X. Zheng, J. Zhou

06/21/2023

Spokespeople

Nucleon and nuclei structure from inclusive measurements

Page:13

Backup Slides

Introduction to ${ }^{3} \mathrm{He}$ Polarization

- Polarized target for study the spin structure of nucleon.
- Free neutron mean lifetime: 880.2 s .
- The unpaired neutron carries the majority of the 3 He nucleus polarization.
- Polarized ${ }^{3} \mathrm{He}$ is a good effective polarized neutron target.

Spin Exchange Optical Pumping (SEOP)

1. Optical Pumping

2. Spin Exchange

Polarized ${ }^{3} \mathrm{He}$ Targets Performance Evolution

FOM $=\left(\right.$ Target Polarization) ${ }^{2} \times$ Beam Current

- 12 GeV era Target Cell:

Target chamber length: 40 cm

- Beam Current: 30uA

Reached over 50\% in beam polarization
Luminosity: $\sim 2.2 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Convection Cell (instead of diffusion cells used in the 6 GeV era)
\rightarrow convection allows for more uniform polarization between target and pumping chamber

Sign Correction
 (based on Melanie's Notes)

In analysis: $\quad A_{\|, \perp}=\frac{\left(N^{+}-N^{-}\right)}{\left(N^{+}+N^{-}\right)}$
\vec{e}^{-}: electron spin
${ }^{3} \overrightarrow{\mathrm{He}}$: target spin
e^{-}spin direction:

Period	HHWP $=$ IN	HHWP = OUP	${ }^{3} \mathrm{He}$ spin direction				
1-pass (Dec. 2019) (clastic + delta)	$\begin{gathered} \text { UPSTREAM } \\ \left(\vec{e}^{-} \text {anti-\\| }{ }^{3} \overrightarrow{H e}\right) \\ \left(\vec{e}^{-} \text {anti-\\| beam direction }\right) \end{gathered}$	DOWNSTREAM $\left(\overrightarrow{e^{-}} \\|^{3} \overrightarrow{\mathrm{He}}\right)$ ($\vec{e}-\\|$ beam direction)	180° : DOWNSTREAM 90° : BEAM LEFT				
5-pass (DIS) (thru SHMS 10354 , HMS 3162)	DOWNSTREAM $\left(\vec{e}^{-} \\|^{3} \overrightarrow{\mathrm{He}}\right)$ ($\vec{e}^{-} \\|$beam direction)	UPSTREAM $\left(\vec{e}^{-} \text {anti- } \\|^{3} \overrightarrow{\mathrm{He}}\right)$ (\vec{e}^{-}anti- $\\|$beam direction)	180° :DOWNSTREAM 90° : BEAM LEFT				
$\begin{gathered} 5 \text {-pass } \\ \text { (DIS) } \\ \text { (SHMS } 10355+\text {, } \\ \text { HMS } 3163+\text {) } \end{gathered}$	$\begin{gathered} \text { UPSTREAM } \\ \left(\vec{e}-\text { anti- } \\|^{3} \overrightarrow{H e}\right) \\ \left(\vec{e}^{-} \text {anti- } \\| \text { beam direction }\right) \end{gathered}$	DOWNSTREAM $(\vec{e}-\\| \sqrt{3} \vec{e})$ ($\vec{e}^{-} \\|$beam direction)	$\begin{gathered} 180^{\circ}: \text { DOWNSTREAM } \\ 90^{\circ}: \text { BEAM LEFT } \end{gathered}$				

A_{1}^{n} Running

If the above definition is used for the asymmetry, then for DIS w/ ${ }^{\mathbf{3}} \mathbf{H e} @ 180 \mathbf{d e g}$:
-before the Wien Flip on $2 / 17 / 20$, IHWP $=$ IN runs get a -1 correction

- after the Wien Flip on $2 / 17 / 20$, IHWP $=$ OUT runs get a -1 correction

1.12 Electron Asymmetries

In an experiment it is usually difficult to align the virtual photon spin direction along the target spin direction, while keeping some flexibility in other kinematic variables. Alternatively the incident electron spin is aligned parallel (anti-parallel) or perpendicular (anti-perpendicular) to the target spin. The virtual photon asymmetries can be related to the measured lepton asymmetries through polarization and kinematic factors. For a target polarized parallel to the beam direction, the experimental longitudinal electron asymmetry is given by [12]

$$
N^{+} \rightarrow \vec{e}^{-} \text {anti-\| }{ }^{3} \overrightarrow{H e}
$$

$$
\begin{equation*}
A_{\|} \equiv \frac{\sigma_{\mathrm{l},}-\sigma_{\mathrm{t}}}{\sigma_{\mathrm{th}}+\sigma_{\uparrow \pi}}=\frac{1-\epsilon}{(1-\epsilon R) W_{1}}\left[M\left(E+E^{\prime} \cos \theta\right) G_{1}-Q^{2} G_{2}\right], \tag{1.45}
\end{equation*}
$$

where $\sigma_{\downarrow \lambda}\left(\sigma_{\dagger \hat{n}}\right)$ is the cross section for scattering off a longitudinally polarized target, with incident electron spin anti-parallel (parallel) to the target spin. Similarly the transverse electron asymmetry is defined for a target polarized perpendicular to the beam direction as [12] $N^{+} \rightarrow \vec{e}^{-}$anti-ll beam direction, ${ }^{3} \overrightarrow{\mathrm{He}}$ pointing toward SHMS

$$
\begin{equation*}
A_{\perp} \equiv \frac{\sigma_{\downarrow=}-\sigma_{\uparrow}}{\sigma_{\downarrow=}+\sigma_{\uparrow \Rightarrow}}=\frac{(1-\epsilon) E^{\prime}}{(1-\epsilon R) W_{1}}\left[M G_{1}+2 E G_{2}\right] \cos \theta \tag{1.46}
\end{equation*}
$$

where $\sigma_{t \Rightarrow}\left(\sigma_{\uparrow}\right)$ is the cross section for scattering off a transversely polarized target, with incident electron spin anti-parallel (parallel) to the beam direction, and the scattered electrons being detected on the same side of the beam as that to which the target spin is pointing. The electron asymmetries can be given in terms of A_{1} and

Xiaochao Zheng Thesis, pg. 34

If the above definition is used for the asymmetry, then for DIS w/ ${ }^{3} \mathrm{He}$ @ 90 deg:

- before the Wien Flip on $2 / 17 / 20$, IHWP $=I N$ runs get a -1 correction on SHMS, IHWP $=$ OUT get a -1 on HMS
- after the Wien Flip on $2 / 17 / 20$, IHWP = OUT runs get a -1 correction on SHMS, IHWP $=$ IN get a -1 on HMS

Sign Correction

(based on Melanie's Notes)

Target Field/Spin Direction

Target Holding Field Direction	${ }^{3}$ He Spin Direction
+ X Beam RIGHT $\left(90^{\circ}\right)$	Beam LEFT
- X Beam LEFT $\left(270^{\circ}\right)$	Beam RIGHT
+ Z DOWNSTREAM $\left(0^{\circ}\right)$	UPSTREAM
$-Z$ UPSTREAM $\left(180^{\circ}\right)$	DOWNSTREAM

The target was always pumped in the low-energy state (${ }^{3} \mathrm{He}$ spin is opposite of the holding field) during data-taking

Cuts for Replayed Root Files (for HMS and SHMS)

- HMS (thph cut0):

Acceptance Cuts:

- $-8<$ H.gtr.dp <8
- $-0.06<$ H.gtr.th <0.06
- $-0.1<$ H.gtr.ph <0.1
- $-15<$ H.react.z < 15

PID cuts:

- $0.8<$ H.cal.etracknorm<2.0
- 1. < H.cer.npeSum
- SHMS (thph cut2):

Acceptance Cuts:

- $-10<$ P.gtr.dp < 22
- $-0.035<$ P.gtr.th <0.035
- $-0.029<$ P.gtr.ph < 0.034
- -15 < P.react. z < 15

PID cuts:

- 0.8 < P.cal.etracknorm<2
- 2. < P.ngcer.npeSum
- Current cuts based on the stats. of T:ibcm1:
ibcm1>3 uA
- If the mean value of ibcm1 is less than 3.5 uA , skip the run for average current too low.

Get Raw Asymmetry

- For each IHWP/target_spin setting:

$$
A_{\text {raw }}=\frac{\sum N_{i}^{+}-\sum N_{i}^{-}}{\sum N_{i}^{+}+\sum N_{i}^{-}} \quad \Delta A_{\text {raw }}=\frac{1}{\sqrt{\sum N_{i}^{+}+\sum N_{i}^{-}}}
$$

$$
A_{\text {raw }, \text { corr }}=\frac{\frac{\sum N_{i}^{+} / \eta_{L T_{i}}^{+}}{\sum Q_{i}^{+}} \frac{\sum N_{i}^{-} / \eta_{L T_{i}}^{-}}{\sum N_{i}^{+} / \eta_{L T T_{i}}^{+}} \frac{\sum N_{i}^{-}}{\sum N_{i}^{-} / \eta_{L T_{i}}^{-}}}{\sqrt{\sum Q_{i}^{-}}}
$$

$$
\bar{N}^{+(-)}=\sum \frac{N_{i}^{+(-)}}{\eta_{L T_{i}}^{+(-)}}
$$

$$
\Delta A_{\text {rave corr }}=2 \sum Q^{+} \sum Q^{-} \sqrt{\frac{\bar{N}^{+2} \Delta \bar{N}^{-2}+\bar{N}^{-2} \Delta \bar{N}^{+2}}{\left(\sum Q^{-} \bar{N}^{+}+\sum Q^{+} \bar{N}^{-}\right)^{4}}}
$$

$$
\Delta \bar{N}^{+(-)}=\sqrt{\sum \frac{N_{i}^{+(-)}}{\eta_{L T_{i}}^{+(-) 2}}}
$$

$$
\Delta A_{\text {corr }}=\Delta A_{\text {raw }, \text { corr }}
$$

- For combined asymmetry, combine each IHWP/target_spin setting:

$$
\left(A_{\text {corr }}\right)_{\text {comb }}=\frac{\sum \frac{\left(A_{\text {corr }}\right)_{i_{i m}}}{\left(\Delta A_{\text {corr }}\right)_{i c}^{2}}}{\sum \frac{1}{\left(\Delta A_{\text {cor }}\right)_{i c x}^{2}}} \quad\left(\Delta A_{\text {corr }}\right)_{\text {comb }}=\sqrt{\frac{1}{\sum \frac{1}{\left(\Delta A_{\text {corr }}\right)_{i e x}^{2}}}}
$$

Get Raw Asymmetry Notes

In order to avoid dividing by zero in the calculation:

- For each IHWP/target_spin setting, If $\sum\left(N^{+}+N^{-}\right)_{i_{s e}}=0$, set:

$$
\frac{\left(A_{\text {corr }}\right)}{\left(\Delta A_{\text {corr }}\right)^{2}}=0
$$

- If $\sum \frac{1}{\left(\Delta A_{\text {corr }}\right)_{i_{\text {sel }}}^{2}}=\inf$

$$
\frac{1}{\left(\Delta A_{\text {corr }}\right)^{2}}=0
$$

(will not plot these values)
,then log: $\begin{array}{r}\left(A_{\text {corr }}\right)_{\text {comb }}=0 \\ \left(\Delta A_{\text {corr }}\right)_{\text {comb }}=0\end{array}$

Get Phy Asymmetry

$$
A_{\text {raw }}=\frac{\sum N_{i}^{+}-\sum N_{i}^{-}}{\sum N_{i}^{+}+\sum N_{i}^{-}} \quad \Delta A_{\text {raw }}=\frac{1}{\sqrt{\sum N_{i}^{+}+\sum N_{i}^{-}}}
$$

$$
\begin{aligned}
& \text { - For each IHWP/target_spin setting: }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta A_{p h y m e}=\frac{2}{D_{N 2}} \sum Q^{+} \sum Q^{-} \sqrt{\frac{\bar{N}^{+2} \Delta \bar{N}^{-2}+\bar{N}^{-2} \Delta \bar{N}^{+2}}{\left(\sum Q^{-} \bar{N}^{+}+\sum Q^{+} \bar{N}^{-}\right)^{4}}}
\end{aligned}
$$

For $\quad A_{\text {phy }}=\operatorname{sign} *\left(A_{\text {phy }, \text { uncorr }}\right)$

$$
\Delta A_{p h y}=\Delta A_{p h y, \text { uncorr }}
$$

- For combined asymmetry, combine each IHWP/target_spin setting:

$$
\left(A_{p h y}\right)_{\text {comb }}=\frac{\sum \frac{\left(A_{p h y}\right)_{i_{x x}}}{\left(\Delta A_{p h y}\right)_{i_{e x}}}}{\sum \frac{1}{\left(\Delta A_{p h y}\right)_{i_{\text {sex }}}}}
$$

$$
\left(\Delta A_{\text {phy }}\right)_{\text {comb }}=\sqrt{\frac{1}{\sum \frac{1}{\left(\Delta A_{p h y y m}\right)_{i m m}^{2}}}}
$$

Get Physics Asymmetry

In order to avoid dividing by zero in the calculation:

- For each IHWP/target_spin setting, If $\sum\left(N^{+}+N^{-}\right)_{i_{s e l}}=0$, set:

$$
\frac{\left(A_{\text {phy }}\right)}{\left(\Delta A_{\text {phy }}\right)^{2}}=0 \quad \frac{1}{\left(\Delta A_{\text {phy }}\right)^{2}}=0
$$

- If $\sum \frac{1}{\left(\Delta A_{\text {phy }}\right)_{i_{s t}}^{2}}=\inf \quad$,then log: $\begin{aligned} & \left(A_{\text {phy }}\right)_{\text {comb }}=0 \\ & \left(\Delta A_{\text {phy }}\right)_{\text {comb }}=0\end{aligned}$
(will not plot these values)
- For HMS kine3 and SHMS kineC, calculate Asym before and after the Wien flip, then combine them together.
- $\mathrm{D}_{\mathrm{N} 2}$ used are the combined Nitrogen Dilution factor.

$$
\Delta A_{p h y s s}=A_{p h y s} \sqrt{\left(\frac{\Delta D_{N 2}}{D_{N 2}}\right)^{2}+\left(\frac{\Delta P_{t_{s s}}}{P_{t}}\right)^{2}+\left(\frac{\Delta P_{b_{s s}}}{P_{b}}\right)^{2}+\left(\frac{\Delta A_{r a w_{s s}}}{A_{r a w}}\right)^{2}}
$$

- Obtain $\mathrm{A}_{\text {phy_sys }}$ after combining both spec (same $\Delta \mathrm{D}_{\mathrm{N} 2}, \Delta \mathrm{P}_{\mathrm{t}}, \Delta \mathrm{P}_{\mathrm{b}}$ but different $\Delta \mathrm{A}_{\text {raw_sys }}$ for two spec)

- Ep bin width=20 MeV

$$
A_{p h y}=\frac{A_{\text {raw }}}{D_{N_{2}} P_{b} P_{t}}
$$

$\mathrm{A}{ }^{3 \mathrm{HHe}}$
 Phys

- Ep bin width=20 MeV

$$
A_{\text {phy }}=\frac{A_{\text {raw }}}{D_{N_{2}} P_{b} P_{t}}
$$

ture from

$$
\begin{array}{cc}
\mathrm{A}_{1}^{3 \mathrm{He}} & \cdot \mathrm{Ep} \text { bin width=}=20 \mathrm{MeV} \\
(\text { with } \mathrm{W}>2 \mathrm{GeV} \text { cut; combine two Cell) } & A_{1}=\frac{A_{\|}}{D(1+\eta \xi)}-\frac{\eta A_{\perp}}{d(1+\eta \xi)}
\end{array}
$$

Statistical Error Propagation:

$$
\Delta A_{1}(\text { stat })=\sqrt{\left(\frac{\Delta A_{\text {para }}(\text { stat })}{D(1+\eta \xi)}\right)^{2}+\left(\frac{\eta \Delta A_{\text {perp }}(\text { stat })}{d(1+\eta \xi)}\right)^{2}}
$$

$\mathrm{A}_{1}{ }^{3 \mathrm{He}}$

(with $\mathrm{W}>2 \mathrm{GeV}$ cut; combine two spec)

- Ep bin width=20 MeV

- Ep bin width=100 MeV
- For SHMS low mom and hi mom overlapping Ep bins combine A and dA first
- Then combine SHMS Ep bins with corresponding HMS Ep bins.
- Final step is to combine

Ep_bin=20 MeV into Ep_bin=100 MeV
$\mathrm{A}_{\text {Phys }}^{3 \mathrm{He}}$
(no W cut; for each Cell)

- Ep bin width=20 MeV

$$
A_{\text {phy }}=\frac{A_{\text {raw }}}{D_{N_{2}} P_{b} P_{t}}
$$

06/21/2023
Nucleon and nuclei structure from inclusive measurements
Page:29
$\mathrm{A}_{\text {Phys }}^{3 \mathrm{He}}$
(no W cut; combine two Cell)

$\mathrm{A}_{3 \mathrm{He} \text { (phys) }}$ Parallel SHMS no W cut

- Ep bin width=20 MeV

$$
A_{p h y}=\frac{A_{\text {raw }}}{D_{N_{2}} P_{b} P_{t}}
$$

$\mathrm{A}_{1}^{3 \mathrm{He}}$
(no W cut; combine two Cell)

- Ep bin width=20 MeV

$$
A_{1}=\frac{A_{\|}}{D(1+\eta \xi)}-\frac{\eta A_{\perp}}{d(1+\eta \xi)}
$$

Statistical Error Propagation:

$$
\Delta A_{1}(\text { stat })=\sqrt{\left(\frac{\Delta A_{\text {para }}(\text { stat })}{D(1+\eta \xi)}\right)^{2}+\left(\frac{\eta \Delta A_{\text {perp }}(\text { stat })}{d(1+\eta \xi)}\right)^{2}}
$$

$\mathrm{A}_{1}{ }^{3 \mathrm{He}}$
(no W cut; combine two spec)

- Ep bin width=20 MeV

- Ep bin width=100 MeV
- For SHMS low mom and hi mom overlapping Ep bins combine A and dA first
- Then combine SHMS Ep bins with corresponding HMS Ep bins.
- Final step is to combine

Ep_bin=20 MeV into Ep_bin=100 MeV

Extracting $g_{1} / F_{1} \& A_{1}, A_{2}$

Electron Beam Energy E = 10.38 GeV (fixed)

$$
\begin{gathered}
\frac{\boldsymbol{g}_{1}^{3} \mathrm{He}}{\boldsymbol{F}_{\mathbf{1}}^{\mathrm{Hee}^{2}}=\left(\frac{1}{\mathrm{~d}^{\prime}}\right)\left(\mathrm{A}_{\|}+\tan \left(\frac{\theta}{2}\right) A_{\perp}\right)} \\
\frac{\boldsymbol{g}_{2}^{3} \mathrm{He}}{\boldsymbol{F}_{1}^{3} \mathrm{He}}=\left(\frac{\mathrm{y}}{2 \mathrm{~d}^{\prime}}\right)\left(-\mathrm{A}_{\|}+\left(\frac{E-E^{\prime} \cos (\theta)}{E^{\prime} \sin (\theta)}\right) A_{\perp}\right) \\
\boldsymbol{A}_{\mathbf{1}}=\frac{1}{\boldsymbol{D}(\mathbf{1}+\boldsymbol{\eta} \xi)} \boldsymbol{A}_{\|}-\frac{\boldsymbol{\eta}}{\boldsymbol{d}(\mathbf{1}+\boldsymbol{\eta} \xi)} \boldsymbol{A}_{\perp} \\
\boldsymbol{A}_{\mathbf{2}}=\frac{\boldsymbol{\xi}}{\boldsymbol{D}(\mathbf{1}+\boldsymbol{\eta} \xi)} \boldsymbol{A}_{\|}+\frac{\mathbf{1}}{\boldsymbol{d}(\mathbf{1}+\boldsymbol{\eta} \xi)} \boldsymbol{A}_{\perp}
\end{gathered}
$$

$A_{\|} \& A_{\perp}$ are the electron physics double-spin asymmetries

$$
\begin{gathered}
D=\frac{E-\epsilon E^{\prime}}{E(1+\epsilon R)} \\
\epsilon=\frac{1}{1+2\left(1+\frac{v^{2}}{Q^{2}}\right) \tan ^{2}\left(\frac{\theta}{2}\right)} \\
\eta=\frac{\epsilon \sqrt{Q^{2}}}{E-E^{\prime} \epsilon} \quad \xi=\eta(1+\epsilon) / 2 \epsilon \\
v=E-E^{\prime} \quad y=v / E \\
d=D \sqrt{\frac{2 \epsilon}{1+\epsilon} \quad R\left(x, Q^{2}\right)=\frac{\sigma_{L}}{\sigma_{T}}(1998)} \\
d^{\prime}=\frac{(1-\epsilon)(2-y)}{y(1+\epsilon R)}
\end{gathered}
$$

Nuclear Corrections \& Quark Flavor Decomposition

- A_{1}^{n} is ultimately extracted from $A_{1}^{3} \mathrm{He}$ as

$$
A_{1}^{n}=\frac{F_{2}^{{ }^{3} \mathrm{He}}\left[A_{1}^{3 \mathrm{He}}-2\left(\frac{F_{2}^{p}}{F_{2}^{3} \mathrm{He}}\right) P_{p} A_{1}^{p}\left(1-\frac{0.014}{2 P_{p}}\right)\right]}{P_{n} F_{2}^{n}\left(1+\frac{0.056}{P_{n}}\right)}
$$

where $P_{n}=0.86_{-0.02}^{+0.036}$ and $P_{p}=-0.028_{-0.004}^{+0.009}$ are the effective nucleon polarizations of the neutron and proton inside ${ }^{3} \mathrm{He}$

- Combining neutron g_{1} / F_{1} data with measurements on the proton allows a flavor decomposition to separate the polarized-to-unpolarized-PDF ratios for up and down quarks:

$$
\begin{array}{ll}
\frac{\Delta u+\Delta \bar{u}}{u+\bar{u}}=\frac{4}{15} \frac{g_{1}^{p}}{F_{1}^{p}}\left(4+R^{d u}\right)-\frac{1}{15} \frac{g_{1}^{n}}{F_{1}^{n}}\left(1+4 R^{d u}\right) & R^{d u}=\frac{\mathrm{d}+\overline{\mathrm{d}}}{u+\bar{u}} \\
\frac{\Delta d+\Delta \bar{d}}{d+\bar{d}}=\frac{-1}{15} \frac{g_{1}^{p}}{F_{1}^{p}}\left(1+\frac{4}{R^{d u}}\right)+\frac{4}{15} \frac{g_{1}^{n}}{F_{1}^{n}}\left(4+\frac{1}{R^{d u}}\right) & \frac{g_{1}^{p}}{F_{1}^{p}}
\end{array} \text { (marameterization) }
$$

$\mathrm{A}_{1}{ }^{\mathrm{p}}$ Fit from World Data

- Fit for E155, E143 at SLAC and EMC, SMC at CERN:

$$
A_{1}^{p}=x^{0.771}(1.126-0.189 x)\left(1-\frac{0.09}{Q^{2}}\right)
$$

Expected Results

$A_{1}{ }^{n}$ Kinematics and Expected Results

$30 \mathrm{uA}, 85 \%$ beam, $40 \mathrm{~cm}, 60 \%$ target

- Slide from X. Zheng 's March 2018 readiness review.

Production Cell Performance

(for targets used in $\mathrm{d}_{2}{ }^{\mathrm{n}}$ experiment)
$\mathrm{d}_{2}{ }^{\mathrm{n}}$ Experiment Target Performance

- Three production cells used
- Polarization: $\sim 45 \%$ in beam

N_{2} Dilution Study

$n_{N_{2}}^{T C}=n_{N_{2}}($ filling density amg $) * f_{T C}$

$$
f_{T C}=V_{T o t} *\left(V_{T C}+V_{P C} \frac{T_{T C}}{T_{P C}}+V_{T T} \frac{T_{T C}}{T_{T T}}\right)
$$

Date	Run start time	Run end time	Run num	Field Directio n (deg)	Spec	Kine	Spec angle (deg)	$\begin{gathered} \mathrm{E}_{\mathrm{p}} \\ (\mathrm{GeV}) \end{gathered}$	Trigger	Target Type	Replayed Event \#	Beam Current (uA)	N2 Pressure TC (amg)	Comment
02/13	10:06	10:38	3085	90	HMS	Kine-4	30	-3.5	3/4	Ref-N2	All; -1	30	$\begin{gathered} 8.690 \\ \pm 0.006 \end{gathered}$	Cell Will
03/02	15:08	16:09	3406	90	HMS	Kine-4	30	-3.5	3/4	Pol-3He	All; -1	30	$\begin{gathered} 0.1460 \\ \pm 0.00147 \end{gathered}$	Cell Bigbrother
01/20	14:10	16:00	2771	180	HMS	Kine-4	30	-3.5	3/4	Pol-3He	All; -1	30	$\begin{gathered} 0.163 \\ \pm 0.00159 \end{gathered}$	Cell Dutch
02/14	04:35	04:59	3105	90	HMS	Kine-3	30	-2.9	3/4	Ref-N2	All; -1	30	$\begin{gathered} 8.690 \\ \pm 0.006 \end{gathered}$	Cell Will
02/16	22:49	00:07	3153	180	HMS	Kine-3	30	-2.9	3/4	Pol-3He	All; -1	30	$\begin{gathered} 0.1460 \\ \pm 0.00147 \end{gathered}$	Cell Bigbrother

Cell Info:

Cell Name	$\mathrm{V}_{\text {Tot }}(\mathrm{mL})$	$\mathrm{V}_{\mathrm{PC}}(\mathrm{mL})$	$\mathrm{V}_{\mathrm{TC}}(\mathrm{mL})$	$V_{T T}(\mathrm{~mL})$	N_{2} filling Density (amg)	Location	Average Temp (${ }^{\circ} \mathrm{C}$)
						PC	238 ± 2
Dutch	441.540 ± 0.001	297.151 ± 0.001	111.866 ± 0.001	32.523 ± 0.001	0.115 ± 0.001	TC	35 ± 2
Bigbrother	427.182 ± 0.001	293.82 ± 0.001	100.759 ± 0.001	32.602 ± 0.001	0.110 ± 0.001	TT	38 ± 2
						Ref_N2	37 ± 2

N_{2} Dilution Study

$$
t_{\text {LiveTime }}=\frac{\Sigma * t_{p s}}{s} \quad \sigma\left(t_{\text {LiveTime }}\right)=t_{\text {LiveTime }} * \sqrt{\frac{1}{\Sigma}+\frac{1}{s}}
$$

$D_{N_{2}}=1-\frac{\Sigma_{N_{2}}\left(N_{2}\right)}{\Sigma_{\text {tot }}\left({ }^{3} \mathrm{He}\right)} \frac{t_{p s}\left(N_{2}\right)}{t_{p s}\left({ }^{3} \mathrm{He}\right)} \frac{Q\left({ }^{3} \mathrm{He}\right)}{Q\left(N_{2}\right)} \frac{t_{\text {LiveTime }}\left({ }^{3} \mathrm{He}\right)}{t_{\text {LiveTime }}\left(N_{2}\right)} \frac{n_{N_{2}}\left({ }^{3} \mathrm{He}\right)}{n_{N_{2}}\left(N_{2}\right)}$

- Σ : good event from T (spectrometer) tree with current cut, no pid or acceptance cut
- s: scaler from from TSP(helicity scaler) tree with current cut
$=1-\frac{\text { Yield }_{N_{2}}\left(N_{2}\right)}{\text { Yield }_{\text {tot }}\left({ }^{3} \mathrm{He}\right)} * \frac{n_{N_{2}}\left({ }^{3} \mathrm{He}\right)}{n_{N_{2}}\left(N_{2}\right)}$
Yield $=\frac{\Sigma * t_{p s}}{Q * t_{\text {LiveTime }}}$
$\sigma($ Yield $)=$ Yield $* \sqrt{\frac{1}{\Sigma}+\frac{\sigma\left(t_{\text {LiveTime }}\right)^{2}}{t_{\text {LiveTime }}^{2}}}$

Run Num	Cell Name	Target Type	spec	Prescale Factor (t_{ps})	Yield	N_{2} Dilution Factor ($\mathrm{D}_{\mathrm{N} 2}$)
Combined	Will	Ref-N2	Kine-4	1.0	$\begin{gathered} 140201 \\ \pm 1331 \end{gathered}$	$\begin{aligned} & 1-(0.097657 \\ & \pm 0.002661) \end{aligned}$
Combined	Bigbrother	Pol-3He	Kine-4	1.0	$\begin{array}{r} 24120 \\ \pm 32.93 \end{array}$	
Combined	Dutch	Pol-3He	Kine-4	1.0	$\begin{gathered} 25795 \\ \pm 34.67 \end{gathered}$	$\begin{aligned} & 1-(0.10194 \\ & \pm 0.001866) \end{aligned}$
Combined	Will	Ref-N2	Kine-3	1.0	$\begin{gathered} 436638 \\ \pm 3616 \end{gathered}$	$\begin{aligned} & 1-(0.093793 \\ & \pm 0.001231) \end{aligned}$
Combined	Bigbrother	Pol-3He	Kine-3	1.0	$\begin{gathered} 78214 \\ \pm 111.5 \end{gathered}$	

- Combine yield for all good runs in same kinematics:
- For each run i get Yield ${ }_{\mathrm{i}}$ and $\sigma(\text { Yield })_{i}$

$$
\text { Yield }_{\text {comb }}=\frac{\sum \frac{\text { Yield }_{i}}{\sigma\left(\text { Yield }_{i}^{2}\right.}}{\sum \frac{1}{\sigma(\text { Yield })_{i}^{2}}}
$$

$$
\sigma\left(\text { Yield }_{\text {comb }}\right)=\sqrt{\frac{1}{\sum \frac{1}{\sigma(\text { Yield })_{i}^{2}}}}
$$

N_{2} Dilution Study
$D_{N_{2}}=1-\frac{\Sigma_{N_{2}}\left(N_{2}\right)}{\Sigma_{\text {tot }}\left({ }^{3} \mathrm{He}\right)} \frac{t_{p s}\left(N_{2}\right)}{t_{p s}\left({ }^{3} \mathrm{He}\right)} \frac{Q\left({ }^{3} \mathrm{He}\right)}{Q\left(N_{2}\right)} \frac{t_{\text {LiveTime }}\left({ }^{3} \mathrm{He}\right)}{t_{\text {LiveTime }}\left(N_{2}\right)} \frac{n_{N_{2}}\left({ }^{3} \mathrm{He}\right)}{n_{N_{2}}\left(N_{2}\right)}$

$$
=1-\frac{\text { Yield }_{N_{2}}\left(N_{2}\right)}{\text { Yield }_{\text {tot }}\left({ }^{3} \mathrm{He}\right)} * \frac{n_{N_{2}}\left({ }^{3} \mathrm{He}\right)}{n_{N_{2}}\left(N_{2}\right)}
$$

$t_{\text {LiveTime }}=\frac{\sum * t_{p s}}{S}$
$\sigma\left(t_{\text {LiveTime }}\right)=t_{\text {LiveTime }} * \sqrt{\frac{1}{\sum}+\frac{1}{S}}$

- Σ : good event from T (spectrometer) tree with current cut, no pid or acceptance cut
- s: scaler from from TSP(helicity scaler) tree with current cut

Run Num	Cell Name	Target Type	spec	Prescale Factor $\left(\mathrm{t}_{\mathrm{ps}}\right)$	Yield	N_{2} Dilution Factor ($\mathrm{D}_{\mathrm{N} 2}$)
Combined	Will	Ref-N2	Kine-B	1.0	$\begin{gathered} 179145 \\ \pm 1526 \end{gathered}$	$\begin{aligned} & 1-(0.093689 \\ & \pm 0.001242) \end{aligned}$
Combined	Bigbrother	Pol-3He	Kine-B	1.0	$\begin{array}{r} 32125 \\ \pm 39.15 \end{array}$	
Combined	Dutch	Pol-3He	Kine-B	1.0	$\begin{gathered} 34474 \\ \pm 40.26 \end{gathered}$	$\begin{aligned} & 1-(0.097471 \\ & \pm 0.001269) \end{aligned}$
Combined	Will	Ref-N2	Kine-C	1.0	$\begin{gathered} 759784 \\ \pm 4692 \end{gathered}$	$\begin{aligned} & 1-(0.092457 \\ & \pm 0.001098) \end{aligned}$
Combined	Bigbrother	Pol-3He	Kine-C	1.0	$\begin{aligned} & 138064 \\ & \pm 149.7 \end{aligned}$	

- Combine yield for all good runs in same kinematics:
- For each run i get Yield ${ }_{\mathbf{i}}$ and $\sigma\left(\right.$ Yield $_{\mathrm{i}}$

$$
\text { Yield }_{\text {comb }}=\frac{\sum \frac{\text { Yield }_{i}}{\sigma\left(\text { Yield }_{i}^{2}\right.}}{\sum \frac{1}{\sigma(\text { Yield })_{i}^{2}}} \quad \sigma\left(\text { Yield }_{\text {comb }}\right)=\sqrt{\frac{1}{\sum \frac{1}{\sigma(\text { Yield })_{i}^{2}}}}
$$

Hall C Optics Notes

Variables in replayed ROOT files

- Focal plane quantities are from drift chamber variables:

P.dc. $x_{-} f p$	$x_{\text {focal plane }}$
P.dc.y_fp	$y_{\text {focal plane }}$
P.dc.xp_fp	x^{\prime} focal plane
P.dc.yp_fp	$y_{\text {focal plane }}^{\prime}$

- Target reconstructed quantities are golden track variables:

P.gtr.dp	delta
P.gtr.x	$x_{\text {target }}$
P.gtr.y	$\mathrm{y}_{\text {target }}$
P.gtr.ph	y^{\prime}
P.gtr.th	$\mathrm{x}^{\prime}{ }_{\text {target }}$

Technically, tangents of the angles:

$$
\begin{aligned}
& x^{\prime}=\frac{\mathrm{d} x}{\mathrm{~d} z} \\
& y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} z}
\end{aligned}
$$

Small approx, same as angle in radians

- Raster
P.react.x raster x position, cm
P.react.y raster y position, cm

