The EMC Effect and Connections to a Possible Nuclear Dependence of R

Dave Gaskell Jefferson Lab

Symposium on Nucleon and Nuclear Structure from Inclusive Measurements

June 20-21, 2023

Outline

- Overview of the EMC Effect
 - Models
 - Pre-JLab data/observations
- Recent experimental results
 - Local density dependence, connection to Short Range Correlations
 - Additional information from more inclusive measurements?
- Connection to R_A - R_D

The EMC Effect – F_2 in the Nucleus

Discovery of the modification of $F_2(x)$ in 1983 demonstrated that quark distributions are modified in the nucleus

 \rightarrow This suggests some new, unexplained dynamics at play in nuclear environment

Bodek et al, PRL 50, 1431 (1983) and PRL 51, 534 (1983)

Origins of the EMC Effect

- Not just "nuclear physics" explanations that include Fermi motion/convolution formalism, binding inadequate on their own
 - Would require the introduction of some off-shell effect (unknown origin)
 - Large effects from "nuclear pions" ruled out by Drell-Yan measurements
- Other explanations
 - Dynamical rescaling $F_2^A(x,Q^2) = F_2^N(x,\xi_A(Q^2) \cdot Q^2)$
 - Multiquark clusters \rightarrow 6, 9, 12 ... quark configurations
 - Quark-meson coupling coupling
 - Connection to SRCs? → Nucleon virtuality (see off-shell effects above), or signature of local-density effects?

Measurements of the EMC Effect

Laboratory/collabor ation	Beam	Energy (GeV)	Target	Year
SLAC E139	е	8-24.5	D , ⁴ He, Be, C, Ca, Fe, Ag, Au	1994,1984
SLAC E140	е	3.75-19.5	D, Fe, Au	1992,1990
CERN NMC	μ	90	⁶ Li, ¹² C, ⁴⁰ Ca	1992
	μ	200	D , ⁴He, C, Ca	1991, 1995
	μ	200	Be, C , Al, Ca, Fe, Sn, Pb	1996
CERN BCDMS	μ	200	D, Fe	1987
	μ	280	D , N, Fe	1985
CERN EMC	μ	100-280	D, Cu	1993
	μ	280	D , C, Ca	1988
	μ	100-280	D , C, Cu, Sn	1988
	μ	280	H, D , Fe	1987
	μ	100-280	D, Fe	1983
FNAL E665	μ	490	D , Xe	1992
	μ	490	D , Xe	1992
DESY HERMES	е	27	D , ³ He, N, Kr	2000, 2003
Jefferson Lab	е	6	D , ³ He, ⁴ He, Be, C, Cu, Au	2009, 2021
	е	6	D , C, Cu, Au	2004 (thesis)
	е	5	D , C, Al, Fe, Pb	2019
	е	11	D , Be, 10B, ¹¹ B, C	2022

Properties of the EMC Effect

Properties of the EMC effect

 Universal x-dependence
 Little Q² dependence
 EMC effect increases with A
 → Anti-shadowing region shows little nuclear dependence

Nuclear dependence one (best?) way to explore origins, test models

Nuclear Dependence of EMC Effect

SLAC E139 explored detailed *nuclear dependence* to gain new insight to EMC Effect

Provided the most extensive and precise data set for x > 0.2

<u>Measured σ_A / σ_D for A=4 to 197</u>

- →⁴He, ⁹Be, C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
- → Verified that the x dependence was roughly constant

Nuclear Dependence of EMC Effect

SLAC E139 explored detailed *nuclear dependence* to gain new insight to EMC Effect

Provided the most extensive and precise data set for x > 0.2

<u>Measured σ_A / σ_D for A=4 to 197</u>

- →⁴He, ⁹Be, C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
- → Verified that the x dependence was roughly constant

E139 results consistent with both *A* and density dependent pictures

JLab E03103 goal: More information on nuclear dependence \rightarrow emphasis on light nuclei: ³He, ⁴He, Be, C

→ New definition of size of EMC effect: |dR/dx| for 0.35<x<0.7

→ 3 He, 4 He, C, EMC effect scales well with density – Be does not!

Scaled nuclear density = $(A-1)/A < \rho >$ \rightarrow remove contribution from struck nucleon

< ρ > from ab initio few-body calculations

→ [**S.C. Pieper and R.B. Wiringa**, Ann. Rev. Nucl. Part. Sci 51, 53 (2001)]

⁹Be has low average density \rightarrow Large component of structure is $2\alpha+n$

 \rightarrow Most nucleons in tight, α -like configurations

EMC effect driven by *local* rather than *average* nuclear density

Can this "local density" picture be confirmed with other/additional nuclei?

New data on ¹⁰B and ¹¹B \rightarrow Hall C, 2018 taken as part of SHMS "commissioning experiments" group

EMC Effect for ¹⁰B and ¹¹B similar to ⁹Be and ¹²C \rightarrow ¹⁰B and ¹¹B structure also has

significant α cluster contribution

Ratio of ⁹Be, ¹⁰B, ¹¹B relative to ¹²C provides more precise A-dependence for A=9-12

→ Small difference between 9 Be and 12 C now more apparent

Karki et al, arXiv:2207.03850 [nucl-ex]

Local Density → Short Range Correlations

What drives high "local" density in the nucleus?

Tensor interaction and short-range repulsive core lead to high momentum tail in nuclear wave function \rightarrow correlated nucleons

Accessing Short Range Correlations

High momentum nucleons in the nucleus can be accessed using quasi-elastic scattering \rightarrow At quasi-elastic peak (*x*=1), all parts of the nucleon momentum distribution contribute

→ At x>1, we can access higher momentum components, if we go to large enough Q^2

Figure courtesy N. Fomin, after Frankfurt, Sargsian, and Strikman, Int.J.Mod.Phys. A23 (2008) 2991-3055

Measuring Short Range Correlations

To measure the (relative) probability of finding a correlated pair, ratios of heavy to light nuclei are taken at x>1 \rightarrow QE scattering

If high momentum nucleons in nuclei come from correlated pairs, ratio of A/D should show a plateau (assumes FSIs cancel, etc.)

EMC Effect and Correlated Nucleons

S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001)

High momentum nucleons from SRCs emerge from tensor part of *NN* interaction <u>– *np* pairs</u> dominate

 \rightarrow Probability to find 2 nucleons "close" together nearly the same for *np*, *nn*, *pp*

For *r*₁₂ < 1.7 fm:

$$P_{pp} = P_{nn} \approx 0.8 P_{np}$$

If EMC effect due to *high virtuality*, EMC effect driven by contributions from np-pairs

→ If EMC effect from *local density*, *np/pp/nn* pairs all contribute (roughly) equally

Nuclear Dependence of EMC and SRCs

Arrington et al, PRC 86, 065204 (2012)

 $a_2 \sim$ number of high momentum nucleons

 R_{2N} ~ number of nucleons "close" together

Detailed study of nuclear dependence of EMC effect and SRCs does not favor either picture *Can we distinguish between these two pictures?*

Describing the EMC Effect with SRCs

One can model the EMC effect using contributions from unmodified (mean field nucleons) and modified nucleons in SRCs

0.2

0.4

0.6

x_B

0.8

Schmookler et. al., Nature 566 (2019) no.7744, 354-358

0.7

son Lab

Jef

0.2

0.4

0.6

x_B

0.8

3

Describing the EMC Effect with SRCs

→ Universal function (from a_2) not unique → Alternate universal function based on R_{2N} also works well

Arrington and Fomin Phys. Rev. Lett. 123 (2019) no.4, 042501

Further Inclusive Studies of the EMC Effect

EMC effect has been studied extensively – what more can we learn via *inclusive* electron scattering?

→Additional light and heavy nuclei
→Light nuclei allow use of "exact" nuclear wave functions
→Explore EMC-SRC connection via A dependence at ~ fixed N/Z, N/Z dependence at ~ fixed A
→Flavor dependence: Is EMC effect different for up and down quarks?
→ See Rakitha Beminiwattha's talk from Tuesday
→Polarized EMC Effect
→Nuclear dependence of R

JLab E12-10-008: More detailed study of Nuclear Dependence

Spokespersons: J. Arrington, A. Daniel, N. Fomin, D. Gaskell

E03-103: EMC at 6 GeV

Jefferson Lab

→ Focused on light nuclei
 → Large EMC effect for ⁹Be
 → Local density/cluster effects?

E12-10-008: EMC effect at 12 GeV

→ Higher Q², expanded range in x (both low and high x) → Light nuclei include ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C

 \rightarrow Heavy nuclei include ⁴⁰Ca, ⁴⁸Ca and Cu and additional heavy nuclei of

particular interest for EMC-SRC correlation studies

JLab: E12-10-008 (EMC) and E12-06-105 (x>1) – Exploring the EMC-SRC Connection

 Both experiments use wide range of nuclear targets to study impact of cluster structure, separate mass and isospin dependence on SRCs, nuclear PDFs

 Experiments will use a common set of targets to provide more information in the EMC-SRC connection

> Heavier nuclei: Cover range of N/Z at ~fixed values of A

Light nuclei: Reliable calculations of nuclear structure (e.g. clustering)

27AI

40*,48Ca

48**Ti**

⁵⁴Fe

58,64Ni

64*Cu

108*Ag

119*Sn

197***Au**

²³²Th

³He

⁴He

E12-10-008 (EMC) and E12-06-105 (x>1) Status

Completed running this year

Jeffe

- → Large number of targets required 2 different solid target ladders, and 15K→4K cryogen switch for H/D→³He/⁴He running
- → Calibrations, etc. underway hope to have preliminary results by DNP

EMC Effect and Nuclear Dependence of R

The EMC Effect provides information about nuclear PDFs

$$F_2(x) = \sum_i e_i^2 x q_i(x)$$

The cross section ratio, σ_A/σ_D is typically taken to be interchangeable with the structure function ratio, $F_2{}^A/F_2{}^D$ \rightarrow Only true if ε =1 or $R_A=R_D$

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A}{F_2^D} \left(\frac{1+R_D}{1+R_A}\right) \left(\frac{1+\epsilon R_A}{1+\epsilon R_D}\right)$$

$$R = \frac{\sigma_L}{\sigma_T} \qquad F_1 = \frac{KM}{4\pi^2\alpha}\sigma_T \qquad F_2 = \frac{K}{4\pi^2\alpha}\frac{\nu}{(1+\nu^2/Q^2)}(\sigma_T + \sigma_L)$$

World Data on Nuclear Dependence of R

Model-independent extraction of *R* requires L-T separation

→ Bulk of world data on nuclear dependence of R comes from global fit to unseparated cross sections

 \rightarrow Example: NMC fit data to 4 parameters

$$F_2^{Sn}/F_2^C = (a_1 + a_2 \ln Q^2)(1 + a_3/Q^2)$$

4th parameter: $\Delta R = R^{Sn} - R^C$

Only true L-T separated data from SLAC E140

SLAC E140

Nuclear dependence of $R = \sigma_L / \sigma_T$ extracted via measurement of ε dependence of σ_A / σ_D

[E140 Phys. Rev. D 49 5641 (1993)]

$$\frac{\sigma_A}{\sigma_D} = \frac{\sigma_A^T}{\sigma_D^T} \left[1 + \frac{\epsilon}{1 + \epsilon R_D} (R_A - R_D) \right]$$

SLAC E140 Measurements

x=0.2, 0.35, 0.5 $Q^2 = 1.0, 1.5, 2.5, 5.0 \text{ GeV}^2$ Iron and Gold targets

 $R_A - R_D$ consistent with zero within errors

Possible issue:

No Coulomb corrections were applied

Coulomb Distortion in Heavy Nuclei

- Electrons scattering from nuclei can be accelerated/decelerated in the Coulomb field of the nucleus
- → This effect is in general NOT included in most radiative corrections procedures
- → Note: Coulomb Corrections perhaps more appropriately described in terms of multi-photon exchange, but Coulomb Corrections provide convenient shorthand

In a simple picture – Coulomb field induces a change in kinematics in the reaction

Effective Momentum Approximation (EMA) $E_e \rightarrow E_e + V_0$ $E_e' \rightarrow E_e' + V_0$

 $V_0=3\alpha Z/2R$ \leftarrow

Electrostatic potential energy at center of nucleus

R_A-R_D: E140 Re-analysis

Re-analyzed E140 data using Effective Momentum Approximation for published "Born"-level cross sections

 \rightarrow Total consistency requires application to radiative corrections model as well

Including Coulomb Corrections yields result 1.5 σ from zero when averaged over **x**

SLAC/JLab Combined Analysis

x=0.5, Q²=4-5 GeV²

Combined analysis of SLAC E139, E140 and JLab 6 GeV data for Fe/Cu at x=0.5, Q²~5 GeV²

JLab Hall C Resonance Region Data

E04-001 (Hall C, 6 GeV) measured nuclear dependence of *R* in resonance region

While DIS data suggest R_A - R_D <0 at large x/Q², 6 GeV suggests R_A - R_D >0

The 2 results need to be reconciled \rightarrow Large x result dominated by uncertainties in comparing data from different experiments

Consequences of non-zero R_A - R_D

Hall C E12-14-002

- Precision Measurements and Studies of a Possible Nuclear Dependence of R=σ_L/σ_T [S. Alsalmi, M.E. Christy, D. Gaskell, W. Henry, S. Malace, D. Nguyen, T.J. Hague, P. Solvignon]
- Measurements of nuclear dependence of structure functions, R_A - R_D via direct L-T separations
- Measurements with H, D, C, Cu, Au targets → will provide absolute cross sections, unseparated ratios (A/D, D/H), separated structure functions (F₁, F₂), absolute values of R

Hall C E12-14-002: Gluons in the nucleus

 F_L sensitive to nuclear gluon distribution \rightarrow measurements at large/moderate x constrain gluons at low x via momentum sum rule

Hall C E12-14-002: EMC-SRC Correlation

Observed correlation between EMC effect and SRCs from unseparated ratios

EMC Effect and SRCs arise from common origin? SRCs serve as "measurement" of nucleon virtuality or local density?

- → If ΔR is non-zero, this correlation will not be the same for all structure functions (F_1, F_2, F_L)
- → If longitudinal photons are significant contribution to EMC effect, what does this mean for origin of EMC effect?
- → Will correlation be linear for all structure functions?

Polarized EMC Effect

Similar to unpolarized DIS, can define nuclear ratio for polarized structure functions

$$R = \frac{F_2^A}{ZF_2^p + (A - Z)F_2^n} \implies R = \frac{g_{1A}}{P_p g_{1p} + P_n g_{1n}}$$

son Lab

Jeff

JLab E12-14-001 in Hall B →Uses ⁷LiD solid polarized target

Polarized EMC effect provides another possible handle on connection to SRCs \rightarrow Smaller fraction of polarized nucleons involved in SRCs

35

The EMC Effect via Inclusive Processes

- Hall C E12-10-008 and E12-06-105 have essentially exhausted the available phase space (nuclear targets) for "standard" EMC Effect/x>1 measurements
- Other inclusive measurements
 - Polarized EMC Effect
 - PV processes

– L-T separations

- A possible nuclear dependence of $R = \sigma_L / \sigma_T$ would have profound impact on our understanding of the EMC effect
 - − Cross section ratios not structure function ratios → impact on nuclear PDFs
 - What is the role of longitudinal photons at large x (EMC) and in the antishadowing region?

EXTRA

Application: *R_A*-*R_D*

DIS/Inelastic cross section:

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \left[F_2(v,Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{Mv} F_1(v,Q^2) \sin^2 \frac{\theta}{2} \right]$$

$$\frac{d\sigma}{d\Omega dE'} = \Gamma \Big[\sigma_T(v,Q^2) + \varepsilon \sigma_L(v,Q^2) \Big] \qquad F_1 \alpha \sigma_T \quad F_2 \text{ linear combination of } \sigma_T \text{ and } \sigma_L$$

Measurements of EMC effect often assume $\sigma_{A/}\sigma_D = F_2^A/F_2^D$ \rightarrow this is true if $R = \sigma_{L/}\sigma_T$ is the same for A and D

SLAC E140 set out to measure $R = \sigma_{L}/\sigma_{T}$ in deuterium and the nuclear dependence of R, i.e., measure $R_A - R_D$

E12-14-002

Excellent control of point-to-point systematic uncertainties required for precise L-T separations

 \rightarrow Ideally suited for focusing spectrometers

Spectrometers

HMS:

 $d\Omega \sim 6 \text{ msr}, P_0 = 0.5 - 7 \text{ GeV/c}$ $\theta_0 = 10.5 \text{ to } 80 \text{ degrees}$ e ID via calorimeter and gas Cerenkov

SHMS:

 $d\Omega \sim 4 \text{ msr}, P_0 = 1 - 11 \text{ GeV/c}$ $\theta_0 = 5.5 \text{ to } 40 \text{ degrees}$ e ID via heavy gas Cerenkov and calorimeter

Perform L-T separations using same spectrometer for all ϵ points as much as possible

