

Charge Symmetric Background Study

For ¹H and ²H Inclusive Cross-section Measurement and F2 Structure Function Extraction

By: Gyang Chung

Virginia Tech. PArtonic Structure of the HAdrons (PASHA) Group gvangchung@vt.edu

Inclusive Physics Symposium @ Jlab

Charge Symmetric Background Study

- F2 Measurement Motivation
- 2 Background
- Experiment
- 🗿 CSB Analysis
- 6 Results & Conclusion

Inclusive Physics Symposium @ Jlab

Experimen

CSB Analysis

Results & Conclusion

F2 Measurement Motivation

What are the Physics motivations?

- Constrain Parton Distribution Functions (PDFs)
- Resonance / DIS Modelling
- Quark Hadron Duality

Inclusive Physics Symposium @ Jlab

Experimen

CSB Analysis

Results & Conclusion

F2 Measurement Motivation

why this work?

Goal

To study the Charge Symmetric Background (**CSB**) for **HMS 59-degree data**. Which will lead to cross-section measurement and F2 extraction

Basic milestones

- **Obtaining a working framework**, benchmark by SHMS known results.
- Performing CSB study for the 59 degree HMS.
- Oheck for other corrections
- Obtain Cross-section and F2

What is F2?

- **1** F_2 is a **Nuclear structure function**, which depends on the Bjorken Scaling parameters **x** and square of momentum transfer Q^2 ; $F_2(x, Q^2)$ [1,2]
- 2 The F₂ is obtained experimentally from Inclusive Scattering Reactions cross-section measurement.
- Otermination of F₂ for ¹H and ²D at the DIS and resonance region; for a large range of x (≈ 0.2 to 1) and Q² (≈ 4 to 16GeV), an inclusive scattering reaction was used.

Experimen

Results & Conclusion

Background

Figure: First order Feynman diagram for electron-nucleon inclusive scattering."

Inclusive Physics Symposium @ Jlab

Charge Symmetric Background Study

Summer 2023

Some definitions of interest:

- Negative squared mass of the virtual photon: $-q^2 = Q^2 = 4EE'Sin^2(\frac{\theta}{2})$
- Virtual photon energy: $\nu = \boldsymbol{E} \boldsymbol{E}'$
- Bjorken scaling parameters (fraction of the nuclear momentum carried by the struck Parton): $\mathbf{x} = \frac{Q^2}{2p.q} = \frac{Q^2}{2M\nu}$
- Fraction of the beam energy transferred by virtual photon: $y = \frac{p.q}{p.k} = \frac{\nu}{E}$
- Invariant mass squared of the final hadronic state: $W^2 = (p + q)^2 = M^2 + 2M\nu - Q^2$

Experiment number: E12-10-002

- Data were obtained using High Momentum Spectrometer (HMS) & SuperHMS (SHMS) in Feb.–March 2018 at Jefferson Lab, using the 10 cm long liquid ¹H and ²H targets.
- At Beam energy: **10.602 GeV**; Current: between **30** and **65** μ A.
- Acquired data contain Background: Charge-Symmetric processes are one of the major contributors to the background (6 to 20% for (CSB) [1])

Experimer

CSB Analysis

Results & Conclusion

CSB Analysis

Figure: First order Feynman diagram for electron-nucleon inclusive scatt

Charge Symmetric Background Study

Experimer

CSB Analysis

Results & Conclusion

CSB Analysis

Figure: Pions & Neutral Pion decay channels & branchingratio

Inclusive Physics Symposium @ Jlab

Charge Symmetric Background Stud

CSB Analysis

- **CS** The process is charge symmetric. By measuring the **e+** counts, the no. of **e**'s produced in the process can be estimated
- **e+ Yield** is measured by changing the polarity of the spectrometer magnet with the same Kinematic settings as that of **e**
- **Positron to electron** (e+/e) ratio is then obtained.

How do one obtain the e+/e from the data?

Desires variables results

Inputs (target, Spect_Angle, Spectrometer, Cent. Mom.)

Run

$$\mathbf{Y}_{corrd} = \frac{\mathbf{Y}_{exp} * \mathbf{PC}_{\pi}}{\varepsilon_{track} * \varepsilon_{trig} * \textit{biol} * \mathbf{C}_{LT}}$$

After each run: $Y_{Corrd} = Y_{corrd} * PS$. PS is prescale Sum Over available runs for **e**+ or **e**. Then $Y_{Charged_Norm.} = \frac{Y_{Corrd}}{Charge_{tot}}$

Inclusive Physics Symposium @ Jlab

CSB Analysis

Charged_Norm_Hist_pTG: 1.010000SPAng:28.900000Mom:1.966000.

Figure: Positron Charged Normalized Yield for Hydrogen at 29 degree.

Charged_Norm_Hist_eTG: 1.010000SPAng:28.900000Mom:1.966000.

Results & Conclusion

CSB Analysis

- The e+/e is calculated with:
- $Y_{corrd} = \frac{Y_{exp}}{C_{LT}}$
- $Y_{corrd} = \frac{Y_{exp}}{\varepsilon_{track}}$
- $Y_{corrd} = \frac{Y_{exp}}{\varepsilon_{trig}}$
- $Y_{corrd} = \frac{Y_{exp}}{biol}$
- The Computer livetime have the largest contribution Inclusive Physics Symposium @ Jlab

Results & Conclusion CSB Analysis იიიიიირიიიი

CSB Analysis

The **e+/e** is calculated with:

•
$$Y_{corrd} = \frac{Y_{exp}}{C_{LT}}$$

•
$$Y_{corrd} = \frac{Y_{exp}}{C_{LT} * \varepsilon_{track}}$$

•
$$Y_{corrd} = \frac{Y_{exp}}{C_{LT} * \varepsilon_{track} * \varepsilon_{trig}}$$

•
$$Y_{corrd} = \frac{Y_{exp}}{C_{LT} * \varepsilon_{track} * \varepsilon_{trig} * biol}$$

 The corrections increases the ratio

Inclusive Physics Symposium @ Ilab

Figure: e⁺/e⁻ Ratio: Corrections added sequentially to visualize their effects.

Experime

CSB Analysis

Results & Conclusion

CSB Analysis

 The e+/e was obtained for different angles (39,29,21) and targets (H, D)

•
$$\frac{e^+}{e^-} = \frac{Y_{Charged_Norm_e^+}}{Y_{Charged_Norm_e^-}}$$

 The CSB contribution is seen to be less at smaller angles than in larger angles.

SHMS CSB_e+/e_Results

Experime

CSB Analysis

Results & Conclusion

CSB Analysis

• The measured e^- radiative corrected differential cross-section $\frac{d^2\sigma_{e^-}}{d\Omega dE'}$ was used with the $\frac{e^+}{e^-}$ yield ratio to give the e^+ x-section as:

$$\frac{d^2\sigma_{e^+}}{d\Omega dE'} = \left(\frac{Y_{e^+}}{Y_{e^-}}\right) \frac{d^2\sigma_{e^-}}{d\Omega dE'}$$

 The result is in agreement with earlier results from JMU.

SHMS CSB_Results

F2 Measurement Motivation

Backgroun

Experimer

CSB Analysis

Results & Conclusion

CSB Analysis

- Plots were fitted with $\frac{d^2\sigma_{e^+}}{d\Omega dE'} = e^{p_0} (e^{p_1(E_b E')} 1)$
- $\frac{d^2 \sigma_{e^+}}{d \Omega d E'}$: plotted differ. Cross-section; E_b, E' beam & scattered $e^$ energy & p_0, p_1
- $p_0(\theta), p_1(\theta)$: are used to calculate this effect at other angles (θ = 25, 33 °), where e^+ data were not taken due to time constrain.

Inclusive Physics Symposium @ Jlab

Charge Symmetric Background Study

Figure: Basic Error analysis of fitting parameters with earlier results

Inclusive Physics Symposium @ Jlab

Charge Symmetric Background Study

Summer 2023

- SHMS Charge symmetric background has been analyzed.
- It has been compared with earlier obtained results.
- The **two results are in good harmony**, with a maximum percentage error of 15% at a spectrometer angle of 39 degrees.
- The results imply that a framework has been developed and can be used for other angles analysis.

- This work implies that **a framework has been developed** and can be used for the other Spectrometer data analysis from the same experiment.
- The **framework will be used to analyse the HMS data** for a spectrometer angle of 59 degrees.
- The **59-degree data analysis is significant** & the CSB contribution is expected to be high.

Thank You

Inclusive Physics Symposium @ Jlab

Charge Symmetric Background Stud

Summer 2023

- O SP Malace, M Paolone, S Strauch, IM Niculescu, G Niculescu, A Accardi, I Albayrak, O Ates, E Christy, C Jackson, et al. Precision measurements of the f2 structure function at large x in the resonance region and beyond.
- Debaditya Biswas. Extraction of Proton and Deuteron F 2 Structure Function from Inclusive Electron-Nucleon Scattering at Large Bjorken- X. PhD thesis, Hampton University, 2022.

