Modeling F_{2} using AI

G. Niculescu (JMU)
S. Brown (VT), I. Niculescu (JMU)

Nucleon and nuclear structure from inclusive measurements JLab, NN, Va

June 21, 2023

What? Why? How?

Disclaimer:

- Even though we had this idea for awhile, working in earnest on this project was a COVID-byproduct.
- ... the fact that we're still "at it" can mean one of (several things):
- value
- stubbornness
- long-COVID
- Many collaborators/advisers contributed a great deal to this project. And they done their level-best.
- Misconceptions/mistakes (including starting this in the first place): GN

\leftarrow Segway to the next slide...

[^0]
What? Why? How?

What?

- $e^{+/-}, \gamma$ beams: excellent tools for probing the nucleon structure
- Inclusive electron scattering: 50+ years of fruitful service to the field...

HighX Workshop, Crete, 2019

Formalism

Define:

$$
\begin{array}{lc}
Q^{2}=4 E E^{\prime} \sin ^{2} \vartheta / 2 & x=\frac{Q^{2}}{2 M \nu} \\
W^{2}=M^{2}+2 M \nu-Q^{2} & (\text { also } Z \& A) \\
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{M o t t}\left(\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\vartheta}{2}+\frac{1}{\nu} F_{2}\left(x, Q^{2}\right)\right.
\end{array}
$$

- F_{i} s connect to pdfs, gpds, etc.
- so studying these is worthwhile.

Why?

- Large body of data (SLAC, DESY, CERN, JLAB...)
- Several nice models (pdf-based, phenomenological, hybrid)
- Models do a good job of representing the data. Actively maintained.
- So, why bother? Why, indeed?

Rationale (I)

Why?

- Most models have limited kinematic reach.
- Meshing two/more models - problematic.
- ...so

instead of

- Speed, speed, speed.
- (Audience:) Gabby, CPU cycles are cheap?

- (GN:) Yes, but if you can spend them more fruitfully elsewhere...
- What types of applications* would benefit from a faster model?
- Good Question...

Rationale (II)

Born

Bremsstrahlung

Vacuum Polarization

Vertex Correction

Multi-photon Emission

External bremsstrahlung

A1: Radiative Corrections

- "as measured by detectors" vs
- "as it happened at the tgt."
- ...the effect can be quite large

Rationale (III)

A2: Bin Centering/Unfolding

- Unfolding is well-beyond the scope of this talk so we'll skip it.
- BC: counting experiments
- Mean Value Theorem:
- (\exists) $c \in[a, b]$ so that $f^{\prime}(c)(b-a)=f(b)-f(a)$
- The whereabouts of c are not (generally) known!

Rationale (IV)

OK! RC, BC, unfolding important. So...

- Where's the AI?
- RC, BC, etc. they all need lots... NO! LOTS of events.
- Said events need event (semi)realistic event generators.
- Existing "artwork" (read "models") are not particularly fast.
- Either for logistic or intrinsic reasons (convolutions, interpolation using large tables, etc.)

furthermore...

- Even if inclusive scattering is not your game...
- you might still benefit from a super-fast, nimble
- (background?, raw detector rates? etc.)
- ...adaptable/expandable to other reactions, observables...

Enter: incIAl

inclAI

- ML model for F_{2}.
- no physics assumptions
- spans entire phase space.
- take data uncertainties into account.
- take \mathbf{Z} and \mathbf{A} into account
- extensible, customizable.
- fast (for both training and deployment)

- Understandable
- Quantify uncertainty!

inclAI (II)

inclAl: Data Assumptions

- world data accepted as is (no re-scaling!)
- uncertainties (stat. \& syst.*)
- features*: Q^{2}, x, W^{2}, Z, A
- label: $F_{2}(\ldots)$
- scaling: std. \& min/max
- ~12k data points (h \& d)
- $\sim 55 \mathrm{k}+$ for all nuclei
- ~80\% of the work went in curating this data (thanks to all that maintain various databases!)

inclAI (III)

inclAl: ML Assumptions

- fully connected ANN.
- 1 ...N hidden layers.
- Activation: ReLU \& sigmoid
- Additional details:
- Early stopping
- LR change on plateau
- Cold/Hot start
- Regularization
- Logging, messaging
- 80/20 train/test split
- stratified sampling

- python/keras/tf

Introduction

incIAI (IV)

Sigmoid

- for each layer " k ", at each node " j ": $X_{j k}=\sum_{i} w_{i j k} x_{i j k}+b_{j k}$
- $X_{j k}$ is then fed to the respective activation function, producing the neuron's output. Repeat for all layers and nodes.
- (Audience:) This is so simple. I bet it does not even work!
- (GN:) Well...

Does it work? (I) ...hydrogen, low Q^{2}

[^1]
Does it work? (II) ...deuterium, low Q^{2}

Does it work? (III) ...hydrogen, high Q^{2} (log)

Does it work? (IV) customizable...

Does it work? (V) ...kinematic range ($7 \leq Q^{2} \leq 13$)

Does it work? (VI) ...data \& model uncertainties

Does it work? (VII) ...vs existing artwork

Introduction
Al Model
Results, Outlook

Does it work? (VIII) ...predicting a whole exp. Live shot off of a BlueJeans session!

inclAI H \& D summary

Machine learning representation of the F_{2} structure function over all charted Q^{2} and x range
S. Brown, G. Niculescu, and I. Niculescu

Phys. Rev. C 104, 064321 - Published 23 December 2021

- hydrogen and deuterium results published in 2021
- precision comparable w/ the data uncertainties
- Speed: 10-100x faster than existing artwork
- Good!
- Now, onward to extensions, adaptation, current (and future) work
- ... in other words: "emerging capabilities"

inclAI as "anomaly detector"

Finding "problems" in existing databases...

kyML

Modeling $e+p \rightarrow e^{\prime}+K^{+}+\Lambda / \Sigma^{0}$ reduced cross-sections

[^2]
inclAl extension to nuclei

inclAl strikes back（and at higher Z！）

－inclAI had target Z A as features ab initio
－．．．with the obvious goal of extending the model to nuclei．
－This presented a few new challenges：
－Finding／reading the data！（ m data sources， n different formats，$n>m$（！！）） Thank you to all the maintainers of these databases／websites！！！
－omG！（some of）this data has quasi－elastic！
－Some of the data comes as ratios wrt another nucleus（usually deuterium）．
－Add a few（more）columns to our DF（year，type of obs，secondary Z and A）．
－Devise a way of handling ratios（HINT：existing F_{2}^{D} artwork does not work above $x=1$ ）．
－Switch from F_{2}＂per nucleon＂to F_{2}＂absolute＂．
－Revise（a little）the way we plot things．

Introduction
Al Model
Results, Outlook
H and D data
inclAI extensions/current work

Data used for training

Group $\rightarrow 1$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$2 \sim$	$\left(\begin{array}{l} 4 \\ \mathrm{Be} \end{array}\right]$											5	(6)	7	(8)	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	10 Ne
$3 \begin{aligned} & \\ & 3\end{aligned}$11 Na	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											13 Al	14 Si	15 P	16 5	17 Cl	18 Ar
419			22	23	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{array}{\|l\|} \hline 27 \\ \text { Co } \\ \hline \end{array}$	$\begin{array}{r} 28 \\ N \end{array}$	$\left[\begin{array}{l} 29 \\ C u \end{array}\right]$	$\begin{array}{\|l\|} \hline 30 \\ \mathrm{Zn} \\ \hline \end{array}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	33 As	Se 3	35 $B r$	3 36 12
537 Rb	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \\ & \hline \end{aligned}$	$\begin{gathered} 39 \\ y \end{gathered}$	40	41 Nb	42 Mo	43 Tc	$\begin{array}{\|} 44 \\ \mathrm{Ru} \\ \hline \end{array}$	45 Rh	46 Pd	47 Ag	48 $C d$	49 In	$\left[\begin{array}{l}50 \\ 5 \mathrm{n}\end{array}\right]$	51 Sb	52 Te	53 1	54 $\times \mathrm{C}$
655	56 Ba	$\begin{array}{r}57 \\ \text { La } \\ \hline\end{array}$	*72 Hf	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	74	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{array}{\|l\|} \hline 76 \\ \mathrm{Os} \\ \hline \end{array}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ \hline \end{gathered}$	78 $P t$	$\begin{aligned} & 79 \\ & \text { Au } \end{aligned}$	$\begin{array}{r} 80 \\ \mathrm{Hg} \\ \hline \end{array}$	81 T 1	82	$\begin{aligned} & 83 \\ & \mathrm{Bi} \\ & \hline \end{aligned}$	84	85 At	86 Rn
Fr	88 Ra	$\begin{array}{r} 89 \\ \mathrm{Ac} \\ \hline \end{array}$	$\stackrel{*}{*} \begin{gathered}104 \\ \mathrm{Rf}\end{gathered}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{array}{\|c\|} \hline 106 \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{gathered} \hline 107 \\ \mathrm{Bh} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 108 \\ \mathrm{Hs} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathrm{Mt} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 112 \\ \mathrm{Cn} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 113 \\ \mathrm{Nh} \\ \hline \end{array}$	$\begin{gathered} 114 \\ \mathrm{FI} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 115 \\ \mathrm{MC} \\ \hline \end{array}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{gathered} \hline 117 \\ \text { Ts } \\ \hline \end{gathered}$	$\begin{array}{r}118 \\ \mathrm{Og} \\ \hline\end{array}$
			* $\begin{array}{r}58 \\ \mathrm{Ce} \\ \hline\end{array}$	$\begin{aligned} & \hline 59 \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 61 \\ \mathrm{Pm} \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & 5 \mathrm{Sm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 63 \\ & \text { Eu } \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & D y \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ \hline \end{array}$	$\begin{aligned} & \hline 68 \\ & \mathrm{Er} \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & \hline \end{aligned}$	70 $Y \mathrm{~b}$	71 u 103	
			* ${ }^{*} 90$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \\ & \hline \end{aligned}$	$\begin{gathered} 92 \\ u \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} 95 \\ \text { Am } \\ \hline \end{array}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & \hline \end{aligned}$	$\begin{aligned} & 97 \\ & \text { Bk } \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ \mathrm{Fm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 101 \\ \mathrm{Md} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 102 \\ \mathrm{No} \\ \hline \end{array}$	$\begin{gathered} 103 \\ \mathrm{Lr} \\ \hline \end{gathered}$	

${ }_{2}^{4} \mathrm{He}$

This, and following pages are PRELIMINARY!!

H and D data
inclAI extensions/current work

${ }_{20}^{40} \mathrm{Ca}$

G. Niculescu (JMU)S. Brown (VT), I. Niculescu (JMU) Modeling F_{2} using AI
H and D data
inclAI extensions/current work

${ }_{26}^{56} \mathrm{Fe}$

As we said: work in progress!!

H and D data
inclAI extensions/current work

How about some heavier nuclei?

Gauging (in)success

How do you know you won (or lost) the game?

Reg.	$x_{\min }$	$x_{\max }$	$\sigma_{\text {DATA }}$	res $_{\text {fit }}$
All	$0.0 \mathrm{e}+00$	$1.0 \mathrm{e}+04$	$8.52 \mathrm{e}-02$	$7.39 \mathrm{e}-02$
R0	$1.0 \mathrm{e}-03$	$1.0 \mathrm{e}-01$	$5.59 \mathrm{e}-02$	$5.78 \mathrm{e}-02$
R1	$1.0 \mathrm{e}-01$	$3.0 \mathrm{e}-01$	$4.41 \mathrm{e}-02$	$5.56 \mathrm{e}-02$
R2	$3.0 \mathrm{e}-01$	$1.0 \mathrm{e}+00$	$5.95 \mathrm{e}-02$	$7.08 \mathrm{e}-02$
R3	$1.0 \mathrm{e}+00$	$1.0 \mathrm{e}+04$	$1.62 \mathrm{e}-01$	$1.70 \mathrm{e}-01$

G. Niculescu (JMU)S. Brown (VT), I. Niculescu (JMU)

Modeling F_{2} using Al

How about...

...leaving a nucleus out of the training and trying to predict its F2 data afterward?

Quo Vadis?

To do: finish/publish the work on nuclei.
Start phase III of the project.

THANK YOU!

[^0]: G. Niculescu (JMU)S. Brown (VT), I. Niculescu (JMU)

[^1]: G. Niculescu (JMU)S. Brown (VT), I. Niculescu (JMU)

[^2]: G. Niculescu (JMU)S. Brown (VT), I. Niculescu (JMU)

