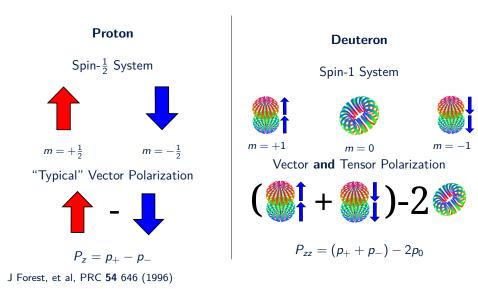
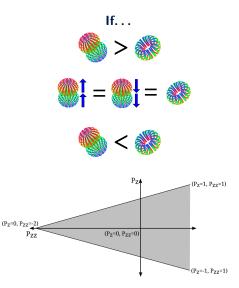
Solid Tensor-Polarized Targets for Tests of Nuclear Structure

Allison J. Zec (she/her)


Univ. of New Hampshire

2023-06-21

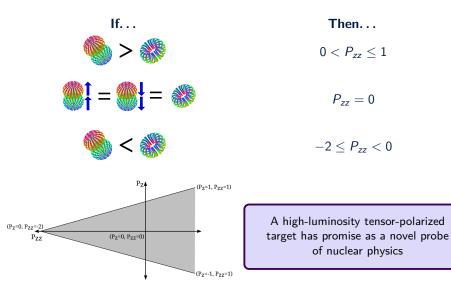


Deuterons and Tensor Polarization

What Deuterons Do That Protons Don't

Tensor Polarization Properties

Then...


 $0 < P_{zz} \leq 1$

 $P_{zz} = 0$

 $-2 \le P_{zz} < 0$

- P_z ranges from -1 to +1
- P_{zz} ranges from -2 to +1
- In deuterons both P_z and P_{zz} can be nonzero simultaneously

Tensor Polarization Properties

$$\frac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e (P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + \frac{1}{2} P_{zz} A_{zz} \right]$$
(1)

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)

If you can integrate over beam helicity, then A_{\parallel} and A_T^{ed} are suppressed

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)

If you can integrate over beam helicity, then A_{\parallel} and A_{T}^{ed} are suppressed

If you can flip between vector polarization signs then A_V^d is suppressed

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)

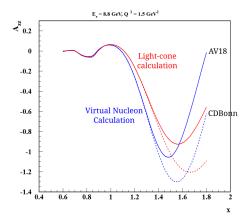
$$\frac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + p_e(P_z A_{\parallel} + P_{zz} A_T^{ed}) + p_z A_V^d + \frac{1}{2} P_{zz} A_{zz} \right]$$
(1)

If you can integrate over beam helicity, then A_{\parallel} and A_{T}^{ed} are suppressed

If you can flip between vector polarization signs then A_V^d is suppressed

Effect of tensor asymmetry remains

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)


Quasielastic Tensor Asymmetry

For $0.8 \leq x \leq 1.8$ σ_p =polarized cross section

 $\sigma_0 =$ unpolarized cross section

$$A_{zz} = \frac{2}{fP_{zz}} \left(\frac{\sigma_{\rho}}{\sigma_0} - 1\right) \qquad (2)$$

- Currently no quasielastic tensor asymmetry measurements!
- Asymmetry in 1.0 < x < 1.8 range predicted as high as 100%
- Difficult to measure with just vector polarized deuterons
- M. Sargsian, M. Strikman arXiv:1409.6056 E. Long *et al*, JLab C12-15-005

Above: Two theory models: AV18 (solid) and CDBonn (dashed) for two different calculation frameworks predicting the quasielastic value of A_{zz}.

Deep Inelastic Tensor Structure Functions

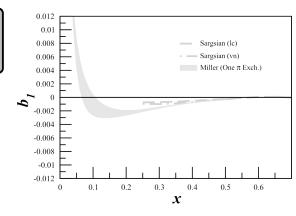
$$W_{\mu\nu} = -\alpha F_1 + \beta F_2 + i\gamma g_1 + i\delta g_2 - \epsilon b_1 + \zeta b_2 + \eta b_3 + \kappa b_4$$

Unpolarized structure functions Vector polarized structure functions Tensor polarized structure functions

$$b_1 = -\frac{3}{2}F_1A_{zz}$$
 (4)

- Callan-Gross relation with $b_2 = 2xb_1$
- *b*₁ sole tensor structure function that has been measured

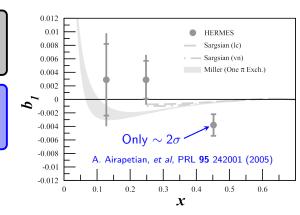
Allison J. Zec (she/her)


Solid Tensor-Polarized Targets for Tests of Nuclear Structure

0.004

SD+DD 0.003 Convolution 0.002 Model 0.001 $xb_1 0$ 02=1.0 GeV2 -0.001 Nucleon $O^2 = 2.5 \text{ GeV}^2$ $O^2 = 5.0 \text{ GeV}^2$ Model -0.002 0.2 0.4 0.6 0.8 1.2 1.4 0 1.6 x

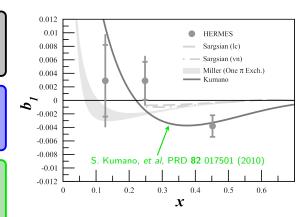
(3)


In traditional deuteron state models b_1 is predicted to be small

K. Slifer et al, JLab C12-13-011

In traditional deuteron state models b_1 is predicted to be small

... but the HERMES experiment measured something different!

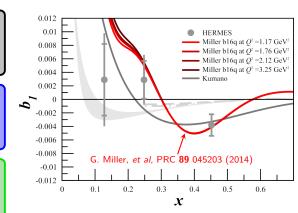


K. Slifer et al, JLab C12-13-011

In traditional deuteron state models b_1 is predicted to be small

... but the HERMES experiment measured something different!

It could be explained by tensor-polarized anti-quark effects


K. Slifer et al, JLab C12-13-011

In traditional deuteron state models b_1 is predicted to be small

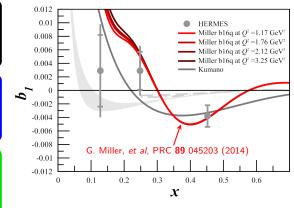
... but the HERMES experiment measured something different!

It could be explained by tensor-polarized anti-quark effects

... or by six-quark hidden color effects.

K. Slifer et al, JLab C12-13-011

In traditional deuteron state models b_1 is predicted to be small

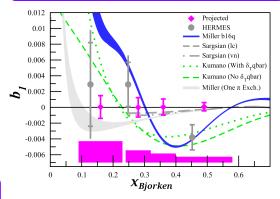

... but the HERMES experiment measured something different!

It could be explained by tensor-polarized anti-quark effects

... or by six-quark hidden color effects.

K. Slifer et al, JLab C12-13-011

The Tensor Experiments


b₁ Experiment

- Intended to improve upon HERMES' 2005 data
- Verifications of zero-crossing
 - Implications for Close-Kumano sum rule
- Tensor physics at quark level
- Better understanding of b₁ allows discrimination of different deuteron components by spin (e.g., quarks vs gluons)

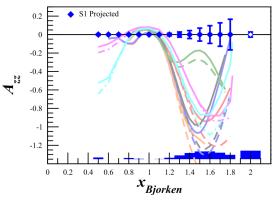
Approved by JLab with Aphysics rating!

E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer *et al*, JLab C12-13-011 **Spokespersons:** K. Slifer, O.R. Aramayo, J.P. Chen, N. Kalantrians, D. Keller, E. Long, P. Solvignon

Azz Experiment


- First-of-its-kind quasielastic Azz measurement
- Implications for SRC physics and deuteron wavefunction
- Widest range of x covered by a single measurement
- Measurement of T₂₀ included!

Spokespersons: E. Long, K. Slifer, P. Solvignon, D. Day, D. Keller, D. Higinbotham

Approved by JLab with Aphysics rating!

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

b₁ Systematics Estimates

Source	Systematic
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Others	2.1%
Total	9.2%

Azz Systematics Estimates

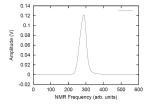
Source	Azz Systematic	T ₂₀ Systematic
Polarimetry	6.0%	6.0%
Dilution Factor	6.0%	2.5%
Packing Fraction	3.0%	3.0%
Others	2.5%	2.5%
Total	9.2%	7.4%

$$A_{zz} = \frac{2}{f P_{zz}} \left(\frac{\sigma_P}{\sigma_0} - 1 \right)$$

b₁ Systematics Estimates

Source	Systematic
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Others	2.1%
Total	9.2%

Azz Systematics Estimates


Source	Azz Systematic	T_{20} Systematic
Polarimetry	6.0%	6.0%
Dilution Factor	6.0%	2.5%
Packing Fraction	3.0%	3.0%
Others	2.5%	2.5%
Total	9.2%	7.4%


$$A_{zz} = \frac{2}{f \left[P_{zz} \right]} \left(\frac{\sigma_p}{\sigma_0} - 1 \right)$$

Both experiments require a highly (\geq 30%) tensor-polarized deuterium target with precise measurement of P_{zz} . How can we achieve that?

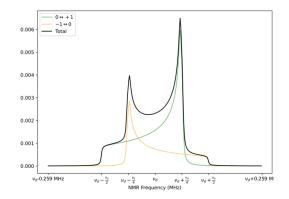
Dynamic Nuclear Polarization (DNP)

- Using µwaves, drive spin transitions of unpaired electrons
- Electrons transfer spin to nuclei
- Nuclear absorption spectrum gives polarimetry info

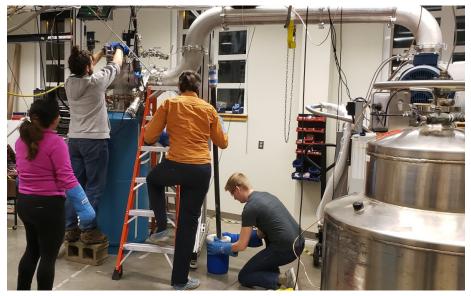
Above: Characteristic lineshape

of the proton

C.D. Keith et al, NIM A 501


(2003)

Allison J. Zec (she/her)


Above: Diagram of the energy level transitions in the DNP process. Adapted from Annu. Rev. Nucl. Part. Sci. 1997. 47:67-109

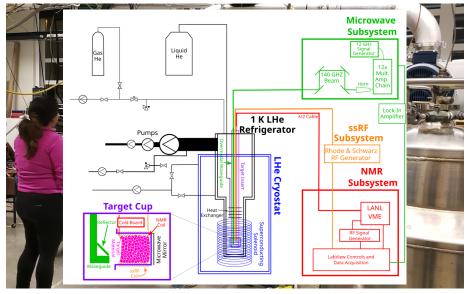
Deuteron Polarization

- NMR at nuclear spin transition frequency drives further spin transitions
- Proton lineshape from $-1/2 \leftrightarrow 1/2$ transition
- Deuteron lineshape has $-1 \leftrightarrow 0$ and $0 \leftrightarrow 1$ components
 - But NMR only gives the sum of the two
- Signal shape affected by material properties and magnetic field angle

Above: Simulated deuteron lineshape showing the contributions from both the $-1 \rightarrow 0$ transition and the $0 \rightarrow 1$ transition.

The UNH polarized target group is hard at work!

Allison J. Zec (she/her)


Solid Tensor-Polarized Targets for Tests of Nuclear Structure

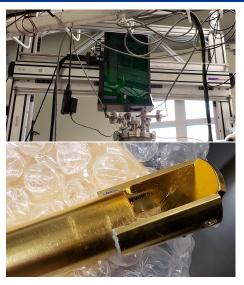
The UNH polarized target group is hard at work!

Allison J. Zec (she/her)

Solid Tensor-Polarized Targets for Tests of Nuclear Structure

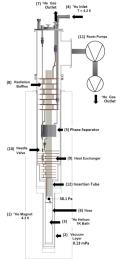
The UNH polarized target group is hard at work!

Allison J. Zec (she/her)


Solid Tensor-Polarized Targets for Tests of Nuclear Structure

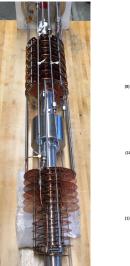
• Target material produced and stored on-site

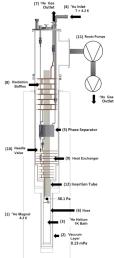

Top Left: Frozen NH₃; *Top Right*: Frozen butanol; *Bottom*: Students at work producing target material.


- Target material produced and stored on-site
- Solid-state microwave system & overmodal waveguide

Top: UNH solid-state microwave system; *Bottom*: Bottom part of waveguide with reflector

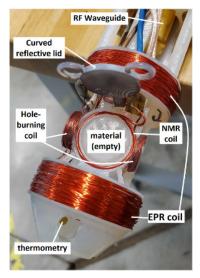
- Target material produced and stored on-site
- Solid-state microwave system & overmodal waveguide
- 1 K LHe refrigerator w/ 2.4 W cooling power





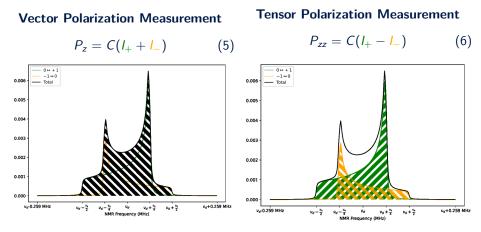
Left: UNH LHe refrigerator; Right: Refrigerator diagram adapted from NIM A **976** (2020) 164277

2023-06-21 17 / 23


- Target material produced and stored on-site
- Solid-state microwave system & overmodal waveguide
- 1 K LHe refrigerator w/ 2.4 W cooling power
- Superconducting 5 T Nb-Sn solenoidal magnet

Left: UNH LHe refrigerator; Right: Refrigerator diagram adapted from NIM A **976** (2020) 164277

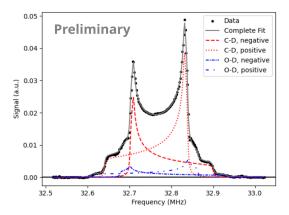
- Target material produced and stored on-site
- Solid-state microwave system & overmodal waveguide
- 1 K LHe refrigerator w/ 2.4 W cooling power
- Superconducting 5 T Nb-Sn solenoidal magnet
- 3D printed target insert assembled on-site


Labeled picture of most-recently-used UNH target ladder

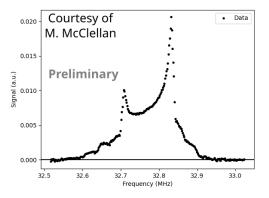
- Target material produced and stored on-site
- Solid-state microwave system & overmodal waveguide
- 1 K LHe refrigerator w/ 2.4 W cooling power
- Superconducting 5 T Nb-Sn solenoidal magnet
- 3D printed target insert assembled on-site
- NMR system is LANL Q-meter design

LANL Q-meter VME in UNH lab. Design from P. McGaughey, *et al*, NIM A **995** (2021) 165045

Tensor Polarization Measurement

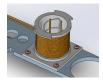

where C is a dimensionless calibration constant, $I_{+} = n_{+} - n_{0}$, and $I_{-} = n_{0} - n_{-}$

D. Keller NIM A 981 (2020) 164504


- Fit with Dulya procedure closely matches data from recent UNH cooldown
- Reconstruct spin-flip and quadrupole curves from fit parameters
- With reconstruction can do more in-depth polarization analysis

May 2022 Cooldown

 $P_z = 28.2\%$ $P_{zz} = 6.1\%$



Above: Curve fit of NMR lineshape from recent target cooldown at UNH.

Above: NMR signal which includes ssRF. Effect can be seen in a raising of one transition signal above 32.8 MHz, and a lowering of the signal below 32.8 MHz.

Right: Design of a target cell with an ss-RF coil. Figure from D. Keller, et al. NIM A **981** 164504 (2020)

- Recent work done with ssRF shows promise, needs further development
 - No polarization results from ssRF runs to report...yet
 - In particular can improve ssRF coil design and construction
- UNH group working to irradiate ND₃ for future cooldowns

Summary

Elena Long

Nathaly Santiesteban

Graduate Students

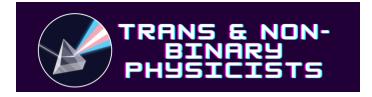
Michael McClellan

Zoe Wolters

UNH Polarized Target Group

- Tensor polarized targets present new opportunities for high-luminosity experiments such as *b*₁ and *A*_{zz}
- DNP tried-and-true method for target polarization
- UNH NPG has demonstrated tensor polarization capability
- UNH NPG developing new tensor polarization methods
- Improvements to NMR signal fitting method show promise
- Imaginary signal may prove useful for future fitting
- Polarized ND₃ results in near future!

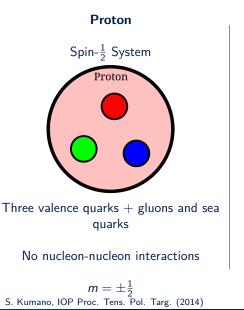
2023-06-21 22 / 23

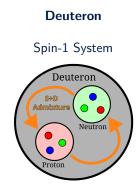

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!




Questions, comments, concerns, observations?

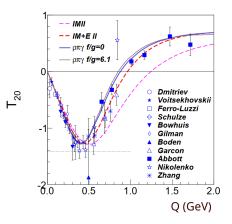
Backup Slides

Deuteron Tensor Polarization and Properties

Protons & Deuterons

Proton-Neutron bound state

Simplest nuclear system: nucleon interaction effects


$$m = \pm 1, 0$$


Elastic Tensor Analyzing Power

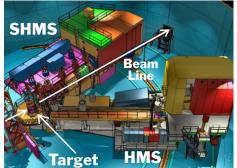
$$T_{20} \approx \frac{A_{zz}}{\sqrt{2}d_{20}} \tag{7}$$

- Third of three elastic scattering functions of deuteron
- Extracted by measuring A_{zz} near elastic peak
- Current data doesn't constrain models well at high *x*
- M. Kohl Nucl Phys A 805 (2008)

For **1.5** < *x* < **2.0**

R. Holt, R. Gilman Rept.Prog.Phys. 75 (2012)

JLab & Hall C

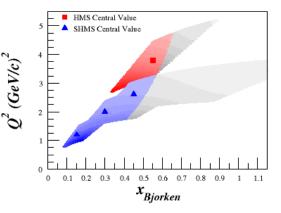


JLab

- 12 GeV CEBAF accelerator
- 4 experimental halls running simultaneously
- $\bullet\,$ Beam current up to 200 μA

Hall C

- Two spectrometers
 - HMS (up to 7.3 GeV momentum)
 - Scattering angle $10^\circ \le \theta' \le 85^\circ$
 - SHMS (up to 11 GeV momentum)
 - Scattering angle 5.5° $\leq \theta' \leq$ 40°
- High-rate detector package



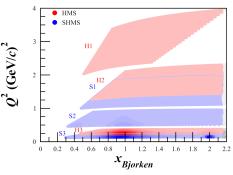
- Approved for 30 days of physics running + 10.8 days overhead
- 11 GeV beam incident on polarized target
- 9.2% systematic error on A_{zz}
- Foward scattering angles

	x _{Bj}	Q ² [GeV ²]	E'_0 [GeV]	θ _{e'} [°]
SHMS	0.15	1.21	6.70	7.35
SHMS	0.30	2.00	7.45	8.96
SHMS	0.452	2.58	7.96	9.85
HMS	0.55	3.81	7.31	12.50

E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer et al, JLab C12-13-011

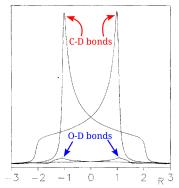

Azz Kinematics

- Approved for 34 days of physics running + 10.3 days overhead
 - 25 days 8.8 GeV beam
 - 8 days 6.6 GeV beam
 - 1 day of 2.2 GeV beam
- 9.2% systematic error on A_{zz} , 7.4% on T_{20}
- Forward scattering angles

	<i>E</i> 0 [GeV]	Q^2 [GeV ²]	<i>E</i> '_ [GeV]	θ _{e'} [°]
SHMS (S1)	8.8	1.5	8.36	8.2
HMS (H1)	8.8	2.9	7.26	12.2
SHMS (S2)	6.6	0.7	6.35	7.5
HMS (H2)	6.6	1.8	5.96	12.3
SHMS (S3)	2.2	0.2	2.15	10.9
HMS (ÌH3)	2.2	0.3	2.11	14.9

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries



E. Long et al, JLab C12-15-005

BACKUP: Tensor Polarization & DNP

ND₃ and Other Target Materials

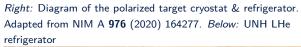
C. Dulya, et al, NIM A 398 (1997)

- Both *b*₁ and *A*_{zz} experiments call for solid ND₃ targets
- Polarization also done with frozen chemically-doped deuterated alcohols
- Lineshape affected by quadrupole splitting of molecule
 - $\bullet~$ Different for ND_3 vs butanol

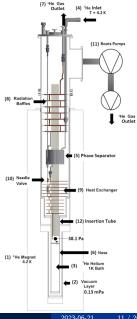
 $\mathit{Left:}$ C-D, O-D bond contribution to the deuteron NMR lineshape in d-butanol

Material	Dopant & method	Polarizable nucleons % by weight	
ND ₃	ND ₂	~30%	
d-ammonia	Irradiation	\sim 30 /8	
C ₄ D ₉ OD	TEMPO	23.7%	
d-butanol	Chemical	23.1%	
		007)	

D. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci 47 67-109 (1997)

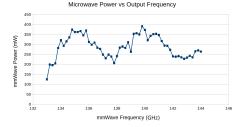

Allison J. Zec (she/her)

BACKUP: UNH Polarized Target System


LHe Refrigerator and Magnet

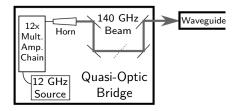
- 1K evaporative LHe refrigerator
 - Built in-house at UNH
- Phase separator removes gaseous helium
- 2.4 W of cooling power

- LHe vapor pressure measured near refrigerator bottom
- Target cell at refrigerator nose
- Superconducting 5 T Nb-Sn solenoidal magent



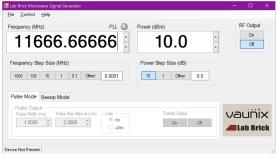
Allison J. Zec (she/her)

Solid Tensor-Polarized Targets for Tests of Nuclear Structure


Solid-State Microwave System

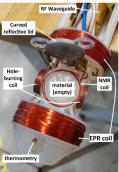
- 12 GHz signal generator outputs 140 GHz mmwaves
- Sits directly above magnet
- Over 100 mW power between 132 and 142 GHz

Above right: Photo of microwave system. Right: Diagram of microwave usage. Above: microwave power test results.



Solid-State Microwave System

- Microwaves sit on robot with moves for precise positioning
- Up to 400 mW output power
- Frequency hopping up to 10 kHz
- No cooling required
- Right: Rendering of microwaves on robot


Below: Microwaves frequency control software

Waveguide & Target Stick

- 2 m-long target stick holds target material in magnet/LHe bath
- Can be removed/replaced during operations
- Gold-plated waveguide transmits mmwave power to target cell
- 3D-printed target stick holds material plus NMR coils


Above Right: Target stick as seen from the top. Below Right: Bottom end of RF waveguide.

Left: Bottom of 3d-printed target ladder including target cup and coils used during polarization.

Material Production

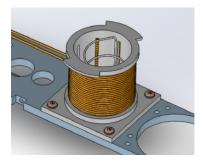
- On-site target material production at UNH
- Can produce:
 - Solid NH₃/ND₃
 - Chemically-doped solid alcohol
- \bullet Dedicated fume hoods for working with NH_3
- Material storage also at UNH

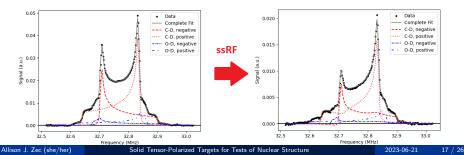
Above: Students producing cryogenic target material. *Left:* Frozen NH₃ produced and stored at UNH. *Right:* Frozen chemically-doped butanol produced at UNH.

NMR System

- NMR signal at deuteron spin transition central frequency (\approx 30 MHz)
 - System is a LANL Q-Meter design
- NMR system sweeps deuteron frequency range at 20 Hz
- RF "cold board" produces NMR signal from VME output

Right: VME crate from which NMR system runs. *Below:* UNH cold board inserted into target ladder.

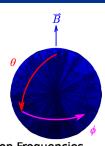

P. McGaughey, *et al*, NIM A **995** (2021) 165045

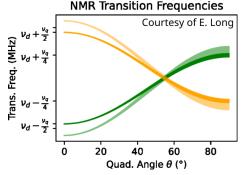

ssRF ("Hole Burning")

- Additional RF coils drive spin flips
- Manipulates area of NMR curve
- Small frequency range

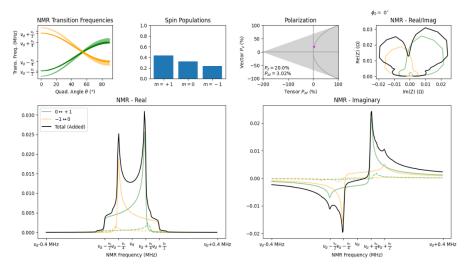
- UVA lab achieved 28.8% *P*_{zz} with ssRF technique
- UNH pol targ. w/ ssRF: P_{zz} =15.5%±5%

Right: ssRF coil schematic. Figure from D. Keller, et al. NIM A **981** 164504 (2020) *Below:* NMR lineshapes without and with ssRF applied (UNH data).



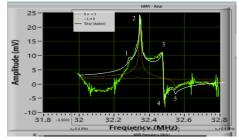

UNH NMR Simulation

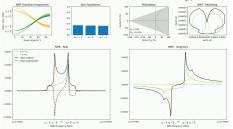
From Spin Flips To Lineshape


- Simulation derived from Cohen & Reif model (1957)
- Assume random distribution of quadrupole angles θ from 0°-90°
- Then calculates transition frequency based on angle and energy level
- Performs 125,000 spin flips into 300 angle bins, giving NMR signal
- Simulation can reproduce results from UVA polarized target lab, as well as previous UNH cooldowns

Right: Quadrupole angles randomly distributed in B-field. *Below*: Spin transition frequencies for each angle θ and each transition.

Simulated NMR Spectrum


Generates real & imaginary components of NMR signal plus spin transition components! (Figure courtesy M. McClellan)


Allison J. Zec (she/her)

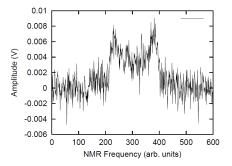
Solid Tensor-Polarized Targets for Tests of Nuclear Structure

NMR Lineshape: Real & Imaginary

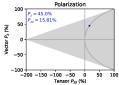
- Simulation can be used to retroactively understand previous cooldowns
- First UNH deuteron "ugly" NMR signal now understood to be from a mistuned phase

Above: Lineshape of first deuteron NMR signal recorded by UNH group (Fall 2020). *Left:* Simulation showing matching real and imaginary components.

BACKUP: Tensor Polarization Analysis


Thermal Equilibrium & Enhancement

Deuteron thermal equilibrium (TE) polarization before microwave irradiation:


$$P(1) = \frac{4 \tanh\left(\frac{g_{i}\mu_{i}B}{2k_{B}T}\right)}{3 + \tanh^{2}\left(\frac{g_{i}\mu_{i}B}{2k_{B}T}\right)} \qquad (8)$$

Only 0.1% polarization at 5 T and 1 K.

TE signal can be used for calibration if detected. Signal is then enhanced with microwaves.

Above: Deuteron TE signal from CLAS target. From C. Keith *et al*, NIM A **501** (2003). *Right*: Polarization curve during enhancement.

NMR Curve Fitting

- Fit NMR lineshape with procedure from C. Dulya *et al*, NIM A **398** (1997) 109-125
- Includes effects from molecular bond quadrupole terms
- Can naively use peak height ratio r to estimate polarization

$$P_{z} = \frac{r^{2} - 1}{r + r^{2} + 1}$$

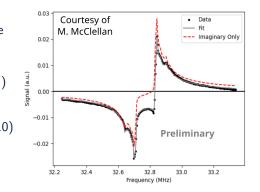
$$P_{zz} = \frac{r^{2} - 2r + 1}{r^{2} + r + 1}$$
(9)

• Then compare *ratio* and *area* methods for *P*_{zz} measurement consistency

Right: Parts of the curve fitting method suggested by C. Dulya *et al.*

$$R, A, \eta, \phi \xrightarrow{\text{compacting}} \text{variables}$$

$$\begin{split} \rho^2 &= \sqrt{A^2 + [1 - \epsilon R - \eta cos(2\phi)]^2} & R = \frac{\omega - \omega_d}{3\omega_q} \\ cos(\alpha) &= \frac{1 - \epsilon R - \eta cos(2\phi)}{\rho^2} & -3 \leq R \leq 3 \end{split}$$


functional form of signal
$$\begin{split} f_{\epsilon}(R,A,\eta,\phi) &= \frac{1}{2\pi\rho} \{ 2cos(\frac{\alpha}{2}) \left[\arctan\left(\frac{Y^2 - \rho^2}{2Y\rho sin(\frac{\alpha}{2})}\right) + \frac{\pi}{2} \right] \\ & \epsilon = \pm 1 \\ & + sin(\frac{\alpha}{2}) ln\left(\frac{Y^2 + \rho^2 + 2Y\rho cos(\frac{\alpha}{2})}{Y^2 + \rho^2 - 2Y\rho cos(\frac{\alpha}{2})} \right) \} \end{split}$$
phi average 🞝 $F_{\epsilon} \approx \frac{1}{J+1} \sum_{i=0}^{J} \frac{\sqrt{3}f_{\epsilon}(R, A, \eta, \phi_j)}{\sqrt{3 - n\cos(2\phi_i)}}$ positive & negative spin flips $\chi''(r,R) \propto \frac{1}{\omega_q} \left\{ \left[\frac{r^2 - r^{1-3\theta R}}{r^{1-\theta R}} \right] F_+(R) + \left[\frac{r^{1+3\theta R} - 1}{r^{1+\theta R}} \right] F_-(R) \right\}$ $\theta = \omega_a / \omega_d$

Real & Imaginary Fits

- Can now manually set NMR phase angle ϕ during cooldowns
- Fit using a rotation of the absorptive (χ") and dispersive (χ') around phase angle:

$$\begin{aligned} \text{Real} &= \chi'' \cos \phi - \chi' \sin \phi \\ \text{Imag} &= \chi'' \sin \phi + \chi' \cos \phi \end{aligned} \tag{1}$$

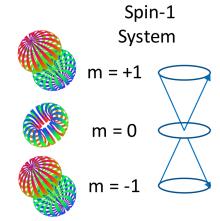
- Can fit a simultaneous mixture of real and imaginary
- First fits with the new method match data well, look very promising!

Above: Fit of recent cooldown data using real and imaginary parts. Fit is compared with an "imaginary only" signal and then fitted for a phase mistune.

Tensor Polarization

"Typical" vector polarization:

 $P_z = N_+ - N_-$ (11)


where $-1 \le P_z \le 1$... but with an m=0 state we have tensor polarization:

$$P_{zz} = (N_+ + N_-) - 2N_0$$
(12)

where $-2 \le P_{zz} \le 1$

Goal

Create target with high tensor polarization for high-luminosity experiments

