Spectator tagging: Inclusive measurements in controlled nuclear configurations

C. Weiss, Symposium Inclusive Measurements, 20-21 June 2023

Basic idea: Use spectator momentum to control nuclear configurations during high-energy process

- \rightarrow relative momentum, spatial size
- \rightarrow interactions, non-nucleonic DoF
- \rightarrow effective polarization

JLab 6/12 GeV: BONuS, ALERT, TDIS p tagging, BAND n tagging

EIC: Far-forward detectors, p and n tagging, good coverage + resolution, simulations. Physics program: JLab LDRD, EIC Yellow Report

High-energy scattering on light nuclei

Physics objectives

Nuclear effects

Spectator tagging

Control nuclear configurations

High-energy process ↔ low-energy structure

Final-state interactions

Applications

Free neutron from on-shell extrapolation

Effective neutron polarization

Tensor-polarized deuteron

Nuclear modifications (EMC effect)

Extensions

A > 2, exclusive procs, improved theory...

Light nuclei: Physics objectives

[Nucleus rest frame view]

Neutron structure

Flavor decomposition of quark PDFs/spin, GPDs, TMDs Singlet-nonsinglet separation in QCD evolution for ΔG

Nuclear interactions

Hadronic: Short-range correlations, NN core, non-nucleonic DoF

Partonic: Nuclear modification of partonic structure EMC effect x > 0.3, antishadowing $x \sim 0.1$ Quarks/antiquarks/gluons? Spin, flavor? Dynamical mechanism?

Coherent phenomena

Nuclear shadowing $x \ll 0.1$

Buildup of coherence, interaction with 2, 3, 4... nucleons? \leftrightarrow Shadowing and saturation in heavy nuclei

Common challenge: Effects depend on nuclear configuration during high-energy process. Main limiting factor.

Light nuclei: Measurements

Inclusive measurements

No information on initial-state nuclear configuration

Model effects in all configurations, average with nuclear wave function $\Psi^* \dots \Psi$

Final-state interactions irrelevant, closure Σ_X

Basic measurements: D, 3He (pol), 4He, ...

Nuclear breakup detection - tagging

Potential information on initial-state nuclear configuration

Study effects in defined configurations, much simpler

Final-state interactions important, influence breakup amplitudes

New opportunities! New challenges for detection and theory!

Light nuclei: Deuteron and spectator tagging

e'

[Nucleus rest frame view]

Deuteron as simplest system

Nucleonic wave function simple, well known (p ~< 400 MeV)

4

Nucleons spin-polarized, some D-wave depolarization

Intrinsic Δ isobars suppressed by isospin = 0 [cf. large Δ component in 3He Bissey, Guzey, Strikman, Thomas 2002]

Spectator nucleon tagging

Identifies active nucleon

Controls configuration through recoil momentum: spatial size \rightarrow interactions, S/D wave

Typical momenta ~ few 10 - 100 MeV

Proton tagging in fixed-target experiments at JLab: CLAS BONuS 6/12 GeV: p = 70-150 MeV ALERT, HALL A TDIS Neutron tagging: CLAS12 BAND → Talks Bueltmann, Tadepalli

Light nuclei: Spectator tagging with EIC

[Collider frame view]

Spectator tagging with colliding beams

Spectator moves forward in ion beam direction

Longitudinal momentum controlled by light-cone fraction:

Given in deuteron rest frame by

$$\frac{p_p + p_p^z}{M_D} \approx \frac{1}{2} \left(1 + \frac{p_p^z}{m} \right)$$

Conserved under boosts

Longitudinal momentum in detector $P_{\parallel p} \approx \frac{P_D}{2} \left(1 + \frac{p_p^z}{m} \right)$

Far-forward detectors

Magnetic spectrometer for protons, integrated in beam line, several subsystems: good acceptance and resolution

Zero-Degree Calorimeter for neutron

Advantage over fixed target: No target material, can detect spectators with rest frame momenta down to ~zero

Further information on EIC forward detectors and physics simulations: EIC Yellow Report 2021 [INSPIRE]

Theory: Tagged DIS cross section

$$\frac{d\sigma}{dxdQ^{2}(d^{3}p_{p}/E_{p})} = [\text{flux}] \Big[F_{Td}(x,Q^{2};\alpha_{p},p_{pT}) + \epsilon F_{Ld}(..) \\ + \sqrt{2\epsilon(1+\epsilon)} \cos\phi_{p}F_{LT,d}(..) + \epsilon \cos(2\phi_{p})F_{TT,d}(..) \\ + \text{spin-dep structures} \Big]$$

Semi-inclusive cross section $e + d \rightarrow e' + X + p$ (or *n*)

Collinear frame: Virtual photon and deuteron momenta collinear $\mathbf{q} \parallel \mathbf{p}_d$, along z-axis

Proton recoil momentum described by light-cone components: $p_p^+ = \alpha_p p_d^+$, \mathbf{p}_{pT} Related in simple way to rest-frame 3-momentum

No assumption re composite nuclear structure, $A = \sum N$, or similar!

Special case of target fragmentation: Fracture function

[Trentadue, Veneziano 93; Collins 97]

Theory: Nucleus and nucleon structure

Light-front quantization

Nuclear structure described at fixed light-front time $x^+ = x^0 + x^3$

Off-shellness of electron-nucleon scattering amplitude remains finite in high-energy limit

Permits matching with on-shell nucleon scattering amplitude and structure functions [Frankfurt, Strikman 80s]

Nuclear structure in nucleon degrees of freedom

Nucleus described by wave function at fixed light-front time $_{x^+}\langle pn | d \rangle = \Psi(\alpha_p, p_{pT})$

Contains low-energy nuclear structure, just "organized" in manner suitable for high-energy processes

Can be computed from microscopic NN interactions, or constructed approx. from nonrelativistic wave function

Theory: Nucleus and nucleon structure

$e \rightarrow e'$ $n \rightarrow X$ $d \rightarrow p$

Impulse approximation

Spectator and DIS final state evolve independently

$$d\sigma[ed \to e'Xp] = S_d(\alpha_p, p_{pT}) d\Gamma_p \times d\sigma[en \to e'X]$$

 $S_d(\alpha_p, p_{pT}) = Flux \times |\Psi_{LF}(\alpha_p, p_{pT})|^2$ spectral function

Final-state interactions

Part of DIS final state interacts with spectator, transfers momentum

Requires theoretical modeling

Strategy

Use measured spectator momentum to control nuclear binding in initial state, interactions in final state

"Select configurations" in nucleus

Applications: Free neutron structure

 $e \rightarrow e'$ $n \rightarrow x$ $d \rightarrow p$

$$S_d(\alpha_p, p_{pT}) = \frac{C}{(p_{pT}^2 + a_T^2)^2} + \text{(less sing.)}$$

Reaching free nucleons

Physical spectator momenta $p_{pT}^2 > 0$: configs have finite size, nucleons interact

Analytic continuation to unphysical momenta $p_{pT}^2 < 0$ can reach configs with "infinite" size, nucleons free!

Light-front wave function: Pole at $p_{pT}^2 < 0$

[Feynman diagram: Neutron on mass shell if 4-momentum $p_n^2 = (p_d - p_p)^2 = m^2$]

Extraction procedure

[Sargsian, Strikman 2005]

Measure proton-tagged cross section at fixed α_p as function of $p_{pT}^2>0$

Divide data by pole term of spectral function

Extrapolate to pole position $p_{pT}^2 \rightarrow -a_T^2 < 0$

Experimentally challenging: Functions depend strongly on p_{pT} – resolution!

EIC simulations: p and n tagging, pole extrapolation, uncertainty analysis, validation

Tagged cross section measured with excellent coverage

Significant uncertainties in division by pole factor $(p_{pT}^2 + a_T^2)^2$ due to experimental p_{pT} resolution

Pole extrapolation realistic for proton spectator, exploratory for neutron

Jentsch, Tu, Weiss, PRC 104, 065205 (2021)

EIC Yellow Report 2021

Applications: Free neutron structure

Jentsch, Tu, CW, PRC 104, 065205 (2021)

Validation of pole extrapolation results by comparison with input model

Applications: Polarized neutron structure

 $e \text{ pol} \qquad e'$ $n \qquad f \qquad x$ $d \text{ pol} \qquad p$

 $\alpha_p, p_{pT},$

Neutron polarization in polarized deuteron

S + D wave, depolarization

Depends on momentum of pn configuration

Control neutron polarization with tagging

D wave drops out at $\mathbf{p}_{pT} = 0$: Pure S-wave, neutron 100% polarized

D wave dominates at $\mathbf{p}_{pT} \sim 400$ MeV: Neutron polarized opposite to deuteron spin!

Effects require proper light-front spin structure: Light-front helicity states, Melosh rotations [Frankfurt, Strikman 1983]

EIC prospects

Physics simulations: 2014-15 JLab LDRD

Applications: Polarized deuteron observables

 $e \text{ pol} \qquad e'$ $n \qquad x$ $d \text{ pol} \qquad g \qquad p$ $S, T \qquad Q_p, p_{pT}, \phi_p$

$$\begin{split} F_{U} &= F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{h} F_{UU}^{\cos \phi_{h}} + \epsilon \cos 2\phi_{h} F_{UU}^{\cos 2\phi_{h}} + \frac{h}{\sqrt{2\epsilon(1-\epsilon)}} \sin \phi_{h} F_{LU}^{\sin \phi_{h}} \\ F_{S} &= S_{L} \left[\sqrt{2\epsilon(1+\epsilon)} \sin \phi_{h} F_{US_{L}}^{\sin \phi_{h}} + \epsilon \sin 2\phi_{h} F_{US_{L}}^{\sin 2\phi_{h}} \right] \\ &+ S_{L} h \left[\sqrt{1-\epsilon^{2}} F_{LS_{L}} + \sqrt{2\epsilon(1-\epsilon)} \cos \phi_{h} F_{LS_{L}}^{\cos \phi_{h}} \right] \\ &+ S_{L} \left[\sin(\phi_{h} - \phi_{S}) \left(F_{US_{T},T}^{\sin(\phi_{h} - \phi_{S})} + \epsilon F_{US_{T},L}^{\sin(\phi_{h} - \phi_{S})} \right) + \epsilon \sin(\phi_{h} + \phi_{S}) F_{US_{T}}^{\sin(\phi_{h} + \phi_{S})} \\ &+ \epsilon \sin(3\phi_{h} - \phi_{S}) F_{US_{T}}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\epsilon(1+\epsilon)} \left(\sin \phi_{S} F_{US_{T}}^{\sin \phi_{S}} + \sin(2\phi_{h} - \phi_{S}) F_{US_{T}}^{\sin(2\phi_{h} - \phi_{S})} \right) \right] \\ &+ S_{L} h \left[\sqrt{1-\epsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LS_{T}}^{\cos(\phi_{h} - \phi_{S})} + \\ & \sqrt{2\epsilon(1-\epsilon)} \left(\cos \phi_{S} F_{LS_{T}}^{\cos \phi_{S}} + \cos(2\phi_{h} - \phi_{S}) F_{LS_{T}}^{\cos(2\phi_{h} - \phi_{S})} \right) \right], \end{split}$$

$$\begin{aligned} F_{T} &= T_{LL} \left[F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{h} F_{UT_{LL}}^{\cos \phi_{h}} + \epsilon \cos 2\phi_{h} F_{UT_{LL}}^{\cos 2\phi_{h}} \right] \\ &+ T_{LL} h \sqrt{2\epsilon(1-\epsilon)} \sin \phi_{h} F_{LT_{LL}}^{\sin \phi_{h}} \\ &+ T_{L\perp} [\cdots] + T_{L\perp} h [\cdots] \\ &+ T_{L\perp} \left[\cos(2\phi_{h} - 2\phi_{T_{\perp}}) \left(F_{UT_{TT},T}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} + \epsilon F_{UT_{TT},L}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} \right) \right. \\ &+ \epsilon \cos 2\phi_{T_{\perp}} F_{UT_{TT}}^{\cos 2\phi_{T_{\perp}}} + \epsilon \cos(4\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(4\phi_{h} - 2\phi_{T_{\perp}})} \\ &+ \sqrt{2\epsilon(1+\epsilon)} \left(\cos(\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(\phi_{h} - 2\phi_{T_{\perp}})} + \cos(3\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(3\phi_{h} - 2\phi_{T_{\perp}})} \right) \right] \\ &+ T_{\perp \perp} h [\cdots] \end{aligned}$$

Vector and tensor polarization

Spin-1 density matrix $\rho_{\lambda'\lambda}(S,T)$

3 vector, 5 tensor parameters

Spin observables

U + S + T cross section

 ϕ_p -dependent structures

U + S cross section same as for spin-1/2 Bacchetta et al 2007

T cross section has 23 new structures, some with ϕ_p -dep unique to T polarization

Time-reversal odd structures: Zero in impulse approximation, serve as tests of FSI

Applications: More deuteron studies with EIC

Tagged tensor-polarized DIS

Use spectator momentum to fix D/S ratio and maximize tensor polarization

Achieve tensor-polarized asymmetry $A_{zz} = O(1)$ as opposed to $\ll 1$ without tagging Cosyn, Weiss, in progress

Tagged EMC effect in deuteron x > 0.3

Use spectator momentum to fix momentum/size of pn configuration

Explore configuration dependence of EMC effect \rightarrow Talk Accardi EIC simulations: Jentsch, Tu, Weiss, in progress

[Tagged diffractive DIS at $x \ll 0.1$

Configuration dependence of nuclear shadowing Guzey, Strikman, Weiss, in progress

Final-state interactions: Basics

Part of final state of high-energy process interacts with spectator

Changes spectator momentum distribution, no effect on total cross section (closure)

What final states are produced? How do they interact? Depends on specifics of high-energy process

Kinematic regimes and mechanisms

DIS, $x \gtrsim 0.1$	h = target fragmentation hadrons on-shell rescattering	Ciofi degli Atti, Kaptari, Kopeliovich 2004+ Strikman, Weiss 2018
DIS, <i>x</i> ≪ 0.1	h = diffractive nucleons QM rescattering, interplay of coherent and incoherent channels	Guzey, Strikman, Weiss, in progress
Finite <i>W</i> , <i>Q</i> ² (JLab 6/12 GeV)	$X = \sum N^*$ resonances challenge to implement coherence, color transparency	Cosyn, Sargsian, Melnitchouk 2011/14 Cosyn, Sargsian 2017

Final-state interactions: DIS at x >~ 0.1

Space-time picture in deuteron rest frame Strikman, Weiss PRC97 (2018) 035209

 $\nu \gg$ hadronic scale: Large phase space for hadron production

"Fast" hadrons $E_h = \mathcal{O}(\nu)$ —current fragmentation region: Formed outside nucleus, interaction with spectator suppressed

"Slow" hadrons $E_h = O(1 \text{ GeV}) \ll v$ – target fragmentation region: Formed inside nucleus, interact with hadronic cross sections Source of FSI in tagged DIS!

Picture respects QCD factorization of target fragmentation: FSI only modifies soft breakup of target, does not cause long-range rapidity correlations

[Deuteron rest frame view]

Slov

 e^{2}

Final-state interactions: DIS at x >~ 0.1

Studied distributions of slow hadrons in DIS on nucleon - target fragmentation

Described by light-cone variables Constrained by light-cone momentum conservation

Used experimental distributions: HERA, EMC, neutrino DIS

Need better data on target fragmentation: JLab12, EIC!

Hadron xF distributions EMC 1986

Momentum distribution of slow hadrons in nucleon rest frame: Cone in virtual photon direction

Strikman, Weiss PRC97 (2018) 035209

Final-state interactions: DIS at x >~ 0.1

FSI calculation

Evaluated scattering of slow hadrons from spectator

QM description: IA + FSI amplitudes, interference

FSI amplitude has imaginary and real part: Absorption and refraction

Momentum and angular dependence

 $p_p \lesssim$ 300 MeV: IA x FSI interference, absorptive, weak angular dependence

 $p_p\gtrsim$ 300 MeV: $|{\rm FSI}|^2,$ refractive, strong angular dependence

Results used in EIC simulations, analysis of JLab12 BAND experiment

FSI angular dependence in deuteron rest frame

Strikman, Weiss PRC97 (2018) 035209

Future: A > 2 nuclei

Will be available at EIC, esp. 3He(pol)

Contain NN pairs with various I, J, LS quantum numbers: Study nuclear interaction effects in different configurations

Light-front structure more complex: Angular momentum coupling, LF \leftrightarrow nonrelativistic correspondence Lev 1990s; Salme et al. 2000s

Nuclear breakup processes A > 2

2-body: $e + 3He \rightarrow e' + X + d$

3-body: $e + 3He \rightarrow e' + X + pn, pp$

Breakup more complex: Nuclear interactions in final state, distorted waves, wave function overlap factors

Needs extensive nuclear structure input!

Summary

Spectator tagging with deuteron permits control of nuclear configuration in high-energy process and differential analysis of nuclear effects — new opportunities, new challenges for theory

Spectator tagging can access free neutron through pole extrapolation; control effective neutron polarization; maximize tensor polarization; control strength of interactions in EMC effect

Spectator tagging programs at JLab12/22 and EIC complementary:

JLab12/22: High luminosity for $x \gtrsim 0.5$, spectator momenta $p \sim 300-500$ MeV, rare processes

EIC: Full DIS kinematics, x < 0.1, far-forward detector coverage and resolution, deuteron polarization?

FSI essential for most applications of tagging, requires investment in theory, dedicated theory/modeling in different kinematic regions

Extension of breakup measurements to A > 2 require substantial nuclear structure input: Spectral functions, decay amplitudes for specific final states, final-state interactions

Rising program — many opportunities, long-term prospects

Supplemental material

Applications: Bound nucleon structure (EMC effect) 22

Basic assumption: Initial-state modification proportional to 4-dim virtuality of active nucleon = function of spectator momentum in tagged DIS [Frankfurt, Strikman 1988] → Talk Accardi

$$p_n^2 - m^2 = (p_d - p_p)^2 - m^2 = \text{function}(\alpha_p, p_{pT}) \equiv V(\alpha_p, p_{pT})$$

$$F_{2n}(x, Q^2; \alpha_p, p_{pT})[\text{bound}] = \left[1 + \frac{V(\alpha_p, p_{pT})}{\langle V \rangle} f(x)\right] F_{2n}(x, Q^2)[\text{free}]$$

[same for $p \leftrightarrow n$]

Model parameters fixed by inclusive EMC effect data (0.3 < x < 0.7) and "average virtuality" $\langle V \rangle_A$ from nuclear structure calculations [Ciofi degli Atti, Frankfurt, Kaptari, Strikman 2007]

Minimal model. Includes possibility that EMC effect generated by SRCs, but not limited to it. Alternative to GCF

Challenge: Separate initial-state modifications from final-state interactions in tagged DIS measurements

BeAGLE simulation, 10^9 events ~ 25 fb⁻¹ ed 5x41 GeV

Jentsch, Strikman, Tu, CW, DIS2022

Comparison of reduced cross section measurement with/without EMC effect

23

Baseline for expected modification

Statistical errors visible: Large *x*, exceptional configurations in deuteron

Here: Physics model does not include FSI. Need strategy that accounts for FSI

Full simulation results: In progress