

Bringing Science Solutions to the World

MARATHON: Nucleon structure, the EMC Effect, and Impact

Tyler Hague Berkeley Lab

Physics and History

All is not well in the nucleus

- The European Muon Collaboration sought to measure nuclear structure in lepton deep inelastic scattering
- The experiment used a lead target as their assumption was that nuclear structure functions were the sum of their nucleon constituents

$$\frac{\sigma_A/A}{\sigma_D/2} \approx \frac{F_2^A/A}{F_2^D/2} \approx 1$$

 As a check on their luminosity, the experiment compared the ratio of lead to deuterium assuming that

$$F_2^A = ZF_2^p + (A - Z)F_2^n$$

What we know and what we don't

- It scales approximately with mass number A
 - But this doesn't have sufficient predictive power
- The density extrapolation model is not correct
 - See JLab E03-103 results (particularly He4 and Be9)
- It is highly correlated with the number of SRC pairs in a nucleus
 - The nature of this correlation is an area of continued research (e.g. JLab XEM2 experiments)
- Knowledge of neutron structure is a limiting factor in our understanding
 - See this talk

What we know and what we don't

- It scales approximately with mass number A
 - But this doesn't have sufficient predictive power
- The density extrapolation model is not correct
 - See JLab E03-103 results (particularly He4 and Be9)
- It is highly correlated with the number of SRC pairs in a nucleus
 - The nature of this correlation is an area of continued research (e.g. JLab XEM2 experiments)
- Knowledge of neutron structure is a limiting factor in our understanding
 - See this talk

J. Seely, et al PRL 103 (2009)

What we know and what we don't

- It scales approximately with mass number A
 - But this doesn't have sufficient predictive power
- The density extrapolation model is not correct
 - See JLab E03-103 results (particularly He4 and Be9)
- It is highly correlated with the number of SRC pairs in a nucleus
 - The nature of this correlation is an area of continued research (e.g. JLab XEM2 experiments)
- Knowledge of neutron structure is a limiting factor in our understanding
 - See this talk

JLab experiments <u>E12-06-105</u> and <u>E12-10-008</u>

What we know and what we don't

- It scales approximately with mass number A
 - But this doesn't have sufficient predictive power
- The density extrapolation model is not correct
 - See JLab E03-103 results (particularly He4 and Be9)
- It is highly correlated with the number of SRC pairs in a nucleus
 - The nature of this correlation is an area of continued research (e.g. JLab XEM2 experiments)
- Knowledge of neutron structure is a limiting factor in our understanding
 - See this talk

MARATHON

A new way of studying nucleon structure

- Nucleons bound in a nucleus have modified structure
- While the proton is well understood, the neutron is not
 - There is no free neutron target (half life of ~15 minutes)
 - How do we know how modified it is if we don't know the unmodified structure?
- Extracting free neutron structure requires knowledge of nuclear effects
 - What if we could (mostly) cancel these?

(a.k.a. neutrons are tricky)

- Neutron structure is extracted as a ratio to a known quantity (proton structure) to constrain uncertainties
- This is also used in so-called "isoscalar correction" in which a nucleus with neutron or proton excess is "converted" to an isoscalar nucleus
- This is typically extracted from
 Deuteron-to-proton ratios
 - Relies on our knowledge of deuteron nuclear effects (not good as *x* grows)
- MARATHON measured this with the A=3 mirror nuclei
 - Similar nuclei → similar nuclear effects that largely cancel in the ratio

$$R_h = \frac{F_2^h}{2F_2^p + F_2^n} \qquad R_t = \frac{F_2^t}{F_2^p + 2F_2^n}$$

$$\mathcal{R}_{ht} = \frac{R_h}{R_t}$$

$$\frac{F_2^n}{F_2^p} = \frac{\frac{F_2^h}{F_2^t} - 2\mathcal{R}_{ht}}{\mathcal{R}_{ht} - \frac{F_2^h}{F_2^t}}$$

$$F_{2,\text{iso}}^{A} = F_{2}^{A} \cdot \frac{A\left(1 + \frac{F_{2}^{n}}{F_{2}^{p}}\right)}{2\left(Z + \frac{NF_{2}^{n}}{F_{2}^{p}}\right)}$$

Results

Yield ratios!

D/p and Extraction Consistency Checks

- The Deuterium/Proton ratio was measured as a systematic check
 - This data is shown to agree well with SLAC data

D/p and Extraction Consistency Checks

- The Deuterium/Proton ratio was measured as a systematic check
 - This data is shown to agree well with SLAC data
- It is commonly understood that nuclear effects are minimal in the vicinity of x~0.3
 - This is then a logical kinematic region to check the consistency of Fⁿ₂/F^p₂
 extractions from each ratio

D/p and Extraction Consistency Checks

- The Deuterium/Proton ratio was measured as a systematic check
 - This data is shown to agree well with SLAC data
- It is commonly understood that nuclear effects are minimal in the vicinity of x~0.3
 - This is then a logical kinematic region to check the consistency of Fⁿ₂/F^p₂
 extractions from each ratio
- It is assumed that the target densities are the cause of this discrepancy and a normalization is applied to the A=3 targets to bring them into agreement*
 - He3 is normalized up by 2.1%
 - H3 is normalized down by 0.4%

MARATHON: Nucleon structure, the EMC Effect, and Impact | June 20, 2023

MARATHON F_2^n/F_2^p MARATHON $\sigma_{^{3}H}/\sigma_{^{3}He}$ BONuS F_2^n/F_2^p D/p extractions of F_2^n/F_2^p (World) 0.7 0.2 0.5 0.6 0.8 0.3 0.4 0.9 X

F_2^{n}/F_2^{p} Results!

0.9-

0.8-

0.7

0.6-

0.5-

0.4-

0.3-

0.2-

0.1

AS SEEN ON

EMC Results

The first EMC measurement on Tritium!

Paper in preparation

EMC Results

Helium-3!

Paper in preparation

EMC Results

Isoscalar Average

Paper in preparation

Impact and further studies

DISCLAIMER: This section consists of studies that are not official MARATHON results. Rather, the following slides describe studies using the published MARATHON data.

JAM Analysis

- The JAM collaboration performed a global QCD analysis of the MARATHON Fⁿ₂/F^p₂ results while floating the quark offshell corrections
- While this analysis found the results to have limited impact on Fⁿ₂/F^p₂ uncertainties, other interesting takeaways were found
- This analysis calculated, from the data, a strikingly different super ratio than what was used to extract F₂ⁿ/F₂^p
- Data requires very large quark off-shell effects —
- Data shows hints of an isovector EMC effect!

Jefferson Lab Angular Momentum (JAM) Collaboration, et al PRL 127 (2021)

Evidence of large Deuteron Off-shell Effects

How sensitive is this result to the model input?

How sensitive is this result to the model input?

There are many super ratios to choose from, what if we used the "average super ratio"?

Not wholly representative of modern calculations

Answer: Not very

Takeaways from the results are driven by the data, model uncertainty plays a very small role!

Thank you!