Symposium: Nucleon and nuclei structure from inclusive measurements

Inclusive electron scattering off the proton with CLAS12 at JLab

06/20/2023

* contact person valerii.klimenko@uconn.edu

THE GRADUATE SCHOOL

V. Klimenko^{*}, University of Connecticut

Extending Knowledge of the Nucleon PDF in the Resonance Region

- Global QCD analyses have provided detailed information on the nucleon PDFs in a wide range of parton fractional longitudinal momentum, x, from 10⁻⁴ to 0.9.
- At large x, in the nucleon resonance region W < 2.5 GeV, the PDFs are significantly less explored.
- Extractions in this region require accounting for higher twist effects, target-mass corrections and evaluation from the nucleon resonance electroexcitations.
 A. N. Hiller Blin et al., *Phys. Rev. C* 100 (2019) 3, 035201, [hep-ph 1904.08016]
 A Accardi et al. *Phys. Rev. D* 11, 114017 (2016). [hep-ph 1602 03154]

CLAS Results

- CLAS measured the inclusive cross section up to x = 0.9 and Q^2 from 0.25 to 4.5 GeV².
- Owing to large acceptance of CLAS, the information on inclusive structure function F₂ can be obtained within a wide range of W from pion threshold to maximal kinematically allowed W-values in any given bin of Q² covered in the measurements.

World data used for moment evaluations of F₂. Shaded area corresponds to CLAS.

UCONN

Resonant Contributions

- CLAS results on γ_vpN* electrocouplings for most N* in the mass range W<1.8 GeV allowed us to evaluate the resonant contributions to F₂ structure function from the experimental results on resonance electroexcitation amplitudes.
- Resonant contributions demonstrate pronounced evolution with photon virtuality Q² different in the first, the second and the third resonance regions. •
- Information on Q² evolution γ_vpN* electrocouplings for all prominent N* is needed for realistic evaluation of the resonant contribution into inclusive. • electron scattering observables.

$$\sigma_{T,L}^{R}(W,Q^{2}) = \frac{\pi}{q_{\gamma}^{2}} \sum_{R} (2J_{R}+1) \frac{M_{R}^{2} \Gamma_{R}(W) \Gamma_{\gamma,R}^{T,L}(M_{R},Q^{2})}{\left(M_{R}^{2}-W^{2}\right)^{2} + \left(M_{R}\Gamma_{R}(W)\right)^{2}}$$

Decay widths of resonance R to γ^*p related to electrocouplings from previous slide.

$$\begin{split} \Gamma_{\gamma,R}^{T}(W = M_{R},Q^{2}) &= \frac{q_{\gamma,R}^{2}(Q^{2})}{\pi} \frac{2M}{(2J_{R}+1)M_{R}} \\ &\times \left(\left| A_{1/2}^{R}(Q^{2}) \right|^{2} + \left| A_{3/2}^{R}(Q^{2}) \right|^{2} \right), \\ \Gamma_{\gamma,R}^{L}(W = M_{R},Q^{2}) &= \frac{2q_{\gamma,R}^{2}(Q^{2})}{\pi} \frac{2M}{(2J_{R}+1)M_{R}} \\ &\times \left| S_{1/2}^{R}(Q^{2}) \right|^{2}, \end{split}$$

UCONN

Inclusive Measurement

- Measurements of (e,e'X) inclusive cross sections are important to understand electron detection efficiency needed for evaluation • of the cross sections of semi-inclusive and exclusive processes foreseen in the exploration with the CLAS12 detector
- CLAS12: 10^{35} cm⁻²sec⁻¹ luminosity, nearly 4π acceptance, 0.05 GeV² < Q² < 10.0 GeV² coverage over photon virtuality. ٠
- Began data taking in Spring 2018 many "run periods" now available. •
- Data from Fall 2018 10.6 GeV electron beam, longitudinally polarized beam, liquid H₂ target. • UCONN Symposium: Nucleon and nuclei structure from inclusive measurements

V. Burkert et al., Nucl. Instrum. Meth. A 959 (2020) 163419

5

Inclusive Measurement

- RG-A Fall 2018
- Beam energy is 10.6 GeV •
- Torus/Solenoid = -100%/-100% (inbending)
- Beam current 45 55 nA •
- Faraday cup charge is 3 * 10⁷ nC •
- CLAS Kinematic coverage:
 - $0.225 < Q^2 < 4.5 \text{ GeV}^2$
 - 1.0815 < W < 2.4 GeV
- CLAS12 Kinematic coverage:
 - $0.5 < Q^2 < 10 \text{ GeV}^2$
 - 0.1 < W < 4 GeV

Cross Section Calculation

- Q² four-momentum transfer squared
- W invariant mass of the final hadron system
- RC radiative correction factor
- BC bin centering correction
- N bin event yield
- η is the product of geometrical acceptance and electron detection efficiency
- N₀ live-time corrected incident electron flux summed over all data runs
- N_A Avogadro's number
- ρ target density
- t target length
- A_{ω} atomic weight of the target

Symposium: Nucleon and nuclei structure from inclusive measurements

Electron PID

- Limited to Forward Detector (5 35° coverage in polar angle).
- Negative track with a hit in Time-of-Flight, Electromagnetic Calorimeters and High Threshold Cherenkov Counter (HTCC). •
- >2.0 photoelectrons in HTCC.
- DC Fiducial cuts.
- -8 < Vertex Z < 2 cm
- $3.5-\sigma$ cuts on a parameterized momentum-dependent sampling fraction. •
- PCAL fiducial cut •
- >70 MeV PCAL
- Electron/pion separation (triangular cut) •

UCONN

Symposium: Nucleon and nuclei structure from inclusive measurements

Empty Target Contribution

Empty Target Contribution

 $yield_{hydrogen} = yield_{Full Target} - yield_{empty} *$

UCONN

Simulation

- Inclusive EG: M. Sargsyan, CLAS-NOTE 90-007 (1990). •
- Elastic tail + Inelastic radiated. •
- Background merging 45-55 nA •
- Kinematic range: •
 - Theta range 5 40° •
 - Scattered electron momentum 1.4 11 GeV •
 - Full Q² coverage. •
 - Additional kinematic smearing to match the resolution of reconstructed data. ٠

Symposium: Nucleon and nuclei structure from inclusive measurements

Acceptance Π in (1)

Acceptance Corrections

Acceptance corrections can be done with multiple methods. One is bin-by-bin method and there are plenty of matrix methods:

Bin-by-bin:

 $Acceptance = \frac{\# Events \ Reconstructed}{\# Events \ Generated}$

It is enough in case of "realistic" EG and "good "MC. It does not include connection between Gen. and Rec. event.

Acceptance Matrix: A_(i,i) describes both Acceptance (geometrical acceptance and detector efficiency) and Bin Migration:

Events Generated in bin j but Reconstructed in bin i Total number of Events Generated in the jth bin

Acceptance unfolding: $Y_i = A_{(i,j)}X_j = X_j = A^{-1}_{(i,j)}Y_i$ where Y_i number of measured events in i-th bin, X_j is number of acceptance corrected events in j-th bin

We used:

- 1. Bin-by-bin
- 2. SVD

UCONN

3. Bayesian Matrix 2D

Acceptance Π in (1)

CERN RooUnfold package was used: https://gitlab.cern.ch/RooUnfold/RooUnfold

Radiative Corrections

Each (Q²,W) bin was divided into a) 21x11 sub bins. Cross Sections with rad. effects on and off were calculated Inclusive born term in every sub bin. c) **Radiative Correction factor:** Mean Cross Section (Rad) Mean Cross Section (No Rad) $2.55 < Q^2 < 2.99 \ GeV^2$ $2.99 < Q^2 < 3.49 \ GeV^2$ RC Iteration 2 RC Iteration 2 1.0 1.0 0.9 ۲ 20.9 0.8 0.8 2.50 2.50 1.50 1.75 2.25 2.25 2.00 1.50 1.75 2.00 1.25 1.25 W, GeV W, GeV

UCONN

Inclusive with radiative effects

Symposium: Nucleon and nuclei structure from inclusive measurements

R in (1)

Bin Centering Corrections

$$\frac{d\sigma}{dQ^2 dW} = \frac{1}{\Delta Q^2 \Delta W} \cdot \frac{N}{\eta \cdot R \cdot BC \cdot N}$$

Each (Q²,W) bin was divided into (the same) 21x11 sub bins.

Mean Cross Section (No Rad) BC Corrections (BCC) = Cross Section (No Rad) in the central point

Symposium: Nucleon and nuclei structure from inclusive measurements

BC in (1)

1 $\overline{N_A \rho t / A_\omega}$

Iterations

After applying all the corrections and normalization accordingly to faraday cup charge we obtained preliminary cross section. That cross sections can be used as a base for new event generator and as a new model for RC and BC estimation.

Preliminary Cross Section

Systematic Uncertainty

Cuts:	Sy	stematic U
1. PCAL fiducial cuts	1.	< 1%
2. DC fiducial cuts	2.	~ 2%
3. Triangular cut	3.	~ 3%
48 < vertex < 2	4.	~ 2%
5. EC Sampling Fraction cut $3.5\sigma \pm \sigma$	5.	~ 2%
6. PCAL dep. Energy > 0.07 GeV	6.	~ 0%
	0.	
Other:	Sy	stematic U
Other: 1. Sector dependence	5y 1.	2% - 10% (
 Other: 1. Sector dependence 2. RC corrections 	5y 1. 2.	2% - 10% (< 2%
 Other: 1. Sector dependence 2. RC corrections 3. Momentum corrections 	5y 1. 2. 3.	2% - 10% (< 2% < 1.5%
 Other: 1. Sector dependence 2. RC corrections 3. Momentum corrections 4. Bin centering corrections 	5y 1. 2. 3. 4.	2% - 10% (< 2% < 1.5% ~ 1%
 Sector dependence RC corrections Momentum corrections Bin centering corrections Bad\wrong PMTs knock out 	5y 1. 2. 3. 4. 5.	2% - 10% (< 2% < 1.5% ~ 1% ~ 1.5%
 Sector dependence RC corrections Momentum corrections Bin centering corrections Bad\wrong PMTs knock out Smearing 	 Sy 1. 2. 3. 4. 5. 6. 	<pre>/stematic Ui 2% - 10% (< 2% < 1.5% ~ 1% ~ 1.5% ~ 1%</pre>

UCONN_®

Symposium: Nucleon and nuclei structure from inclusive measurements

Incertainty

Incertainty:

 $(< 5\% \text{ for } Q^2 < 6.5 \text{ GeV}^2)$

- Preliminary results on inclusive electron scattering cross sections are available from CLAS12 in the kinematic range of 1.15 < W < 2.5 GeV and 2.55 < Q² < 9.0 GeV². Our new measurements show reasonable agreements with world data in overlapping Q² regions.
- First (e,e'X) data from CLAS12 have become available within a broad coverage over W from pion threshold ton 2.5 GeV at any given bin of Q^2 within the range of photon virtuality from 2.55 GeV² to 9.0 GeV².
- Evaluation of the resonant contributions from exclusive meson electroproduction data will pave a way to extend knowledge on PDF at large x in the resonance region.
- The (e,e'X) data from CLAS12 offer an opportunity to explore evolution of inclusive structure function F₂ within the range of distances where the transition from strongly coupled to pQCD regimes is anticipated.

Back Up

Symposium: Nucleon and nuclei structure from inclusive measurements

Charge Symmetrical Background

- Momentum range for the last but one Q^2 bin is 3.7 6.3 GeV
- Momentum range for the last bin Q^2 is 2.9 5.7 GeV
- Minimal possible momentum for our kinematics is at W = 2.225 GeV, $Q^2 = 10.4 \text{ GeV}^2$ so $P_{min} = 2.893 \text{ GeV}$
- Charge symmetrical background is negligible in our kinematic range

UCONN

```
W = 2.225
prMass = 0.938272
02 = 10.4
Ebeam = 10.604
Ebeam - (W**2+Q2-prMass**2) / (2*prMass)
```

2.8928721745847668