
Polarized Helium-3 Target

Bill Henry

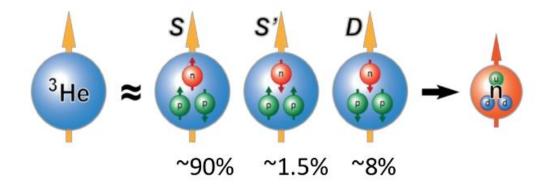
(With slides stolen from Murchhana R., Mingyu C., Gordon C, Arun T, Hunter P., Junhao)

Thursday, August 10, 2023

Office of Science

Polarized Helium-3 Experiements @ JLab

Completed Experiments:

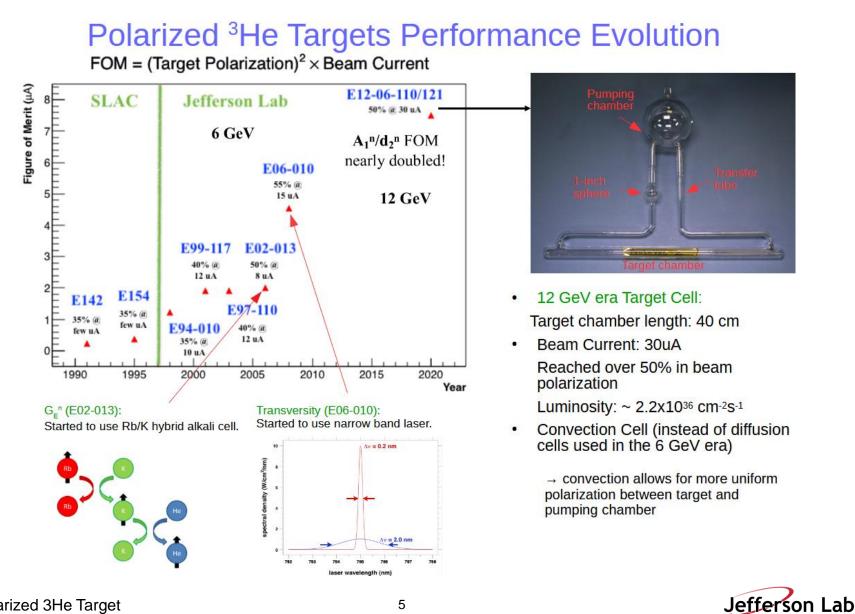

- E94-010: Measurement of the Neutron (³He) Spin Structure Function at Low Q²; a connection between the Bjorken and GDH sum rules.
- E95-001: Transverse Asymmetry A_T from ³He (e,e')at low Q.
- E99-117: Aⁿ1 at Large x using JLab at 6 GeV.
- E97-103: Search for Higher Twist Effects in the Neutron Spin Structure Function gⁿ₂.
- <u>E01-012</u>: Neutron (³He) spin structure functions in the resonance region spin duality.
- E97-110: The GDH Sum Sule and Spin Structure of ³He and the Neutron Using Nearly Real Photons.
- <u>E02-013</u>: Neutron Electric Form Factor G_{En} at High Q^2 .
- E06-010: Single Target-Spin Asymmetry in Semi-Inclusive Pion Electroproduction on a Transversely Polarized ³He Target.
- E07-013: Normal Target Single-Spin Asymmetry in Inclusive n(e,e') with a Polarized ³He Target.
- E06-014: Precision measurements of d_{2n}: color polarizabilities.
- E05-015: Target Single Spin Asymmetry in Quasi-Elastic ³He(e, e') Reaction.
- E05-012: A_x and A_z in Quasi-Elastic ³He(e, e'd) Reaction
- E08-005: Target Single-Spin Asymmetry Ay in Quasi-Elastic ³He(e,e'n) Reaction

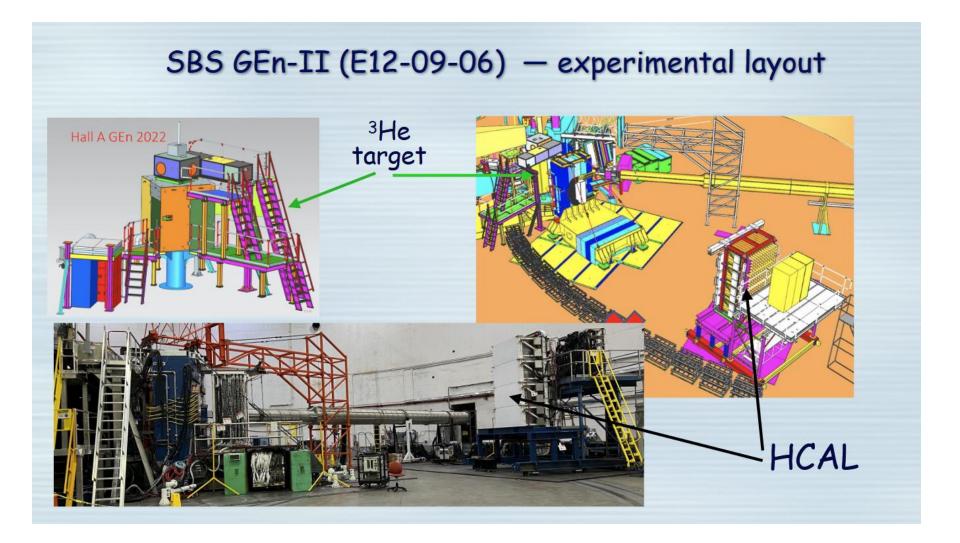
Approved 12 GeV Experiments:

- E12-06-122: A1n in the Valance Quark Region Using an 11 GeV Beam and a Polarized ³He target in Hall C Completed
- <u>E12-06-122</u>: Neutron g2 and d2 at High Q² in Hall C Completed
- E12-06-122: A1n in the Valance Quark Region Using 8.8 GeV and 6.6 GeV Beam Energies and Bigbite Spectrometer in Hall A
- E12-09-018: SIDIS Pion and Kaon Electroproduction on a Transversely Polarized ³He Target using the Super BigBite and Bigbite Spectrometers in Hall A 2024
- E12-09-016: GEn/GMn at High Q² In Progress
- E12-09-014: Target Single Spin Asymmetry in SIDIS (e,e'pi) Reaction on a Transversely Polarized ³He Target at 8.8 and 11 GeV
- E12-11-007: Asymmetries in SIDIS (e,e'pi) Reactions on a Longitudinally Polarized ³He Target at 8.8 and 11 GeV SoLID


Introduction To Polarized Helium-3

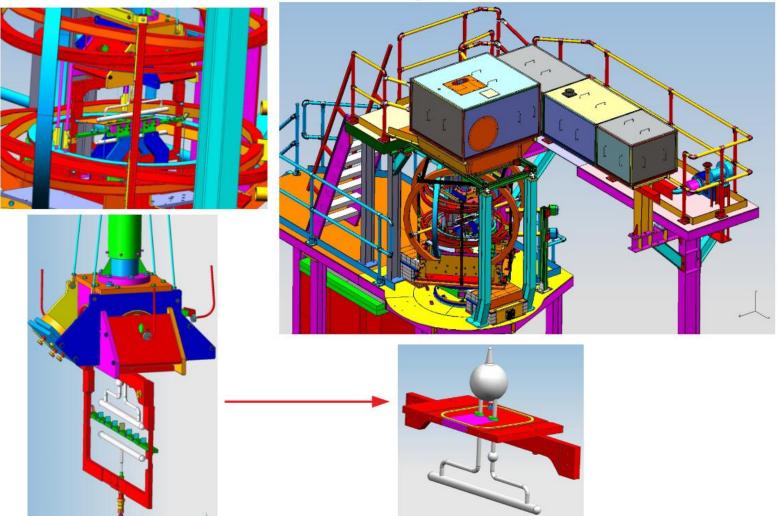
- Polarized target for study the spin structure of nucleon.
- Free neutron mean lifetime: 880.2 s.
- The unpaired neutron carries the majority of the ³He nucleus polarization.
- Polarized ³He is a good effective polarized neutron target.


Introduction To Polarized Helium-3


2. Spin Exchange

Introduction To Polarized Helium-3

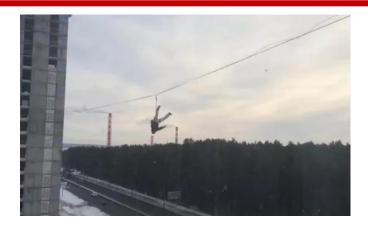
Polarized Helium-3 in Hall A


Polarized Helium-3 in Hall A

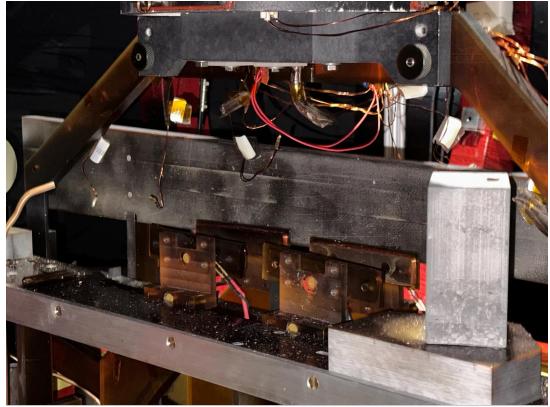
Polarized Helium-3 in Hall C

Polarized ³He Target in Hall C

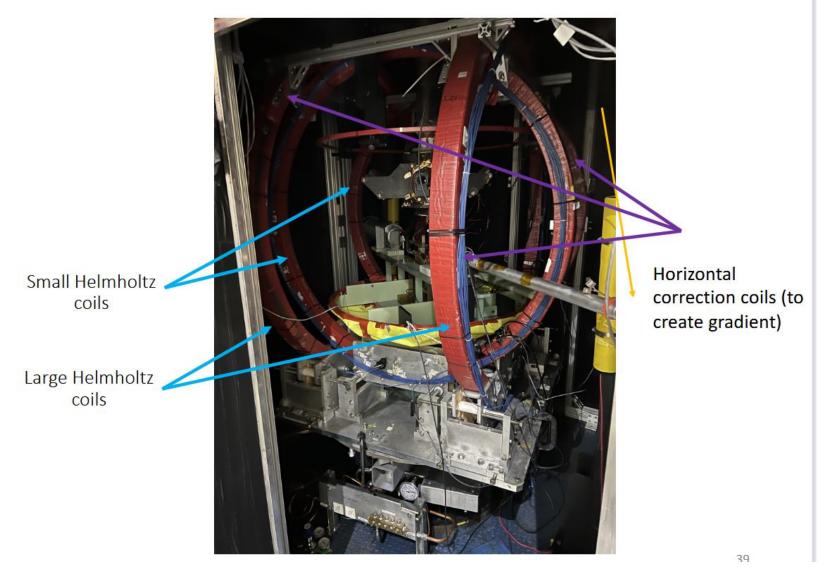
Jefferson Lab


Helium-3 Running

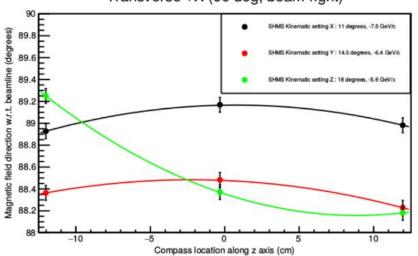
Target tightrope

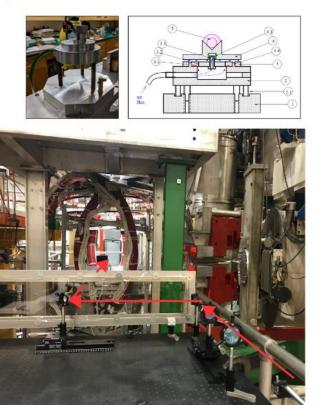

- ~200W Lasers. Period.
- 10 atm of pressure in the target cell. Be extra careful while dealing with it
- Need to wear eye protection, hearing protection, and full hands shirt
- The cell windows are 10 times thinner than the walls
- The target enclosure is an ODH (oxygen deficiency hazard) area
- No clear line of sight of the cell to get perfect alignment (like in a lab situation)
- The beam width should be narrow enough so as to not hit the walls of the cell
- Once the light tight enclosure is closed it takes several hours to open it and close
- Big changes in polarization takes many hours to reach production settings
- The polarization drops each time a NMR measurement is made
- Complicated target with a number of unique issues and commissioning has been time consuming
- Lots of safety procedures to follow!

Helium-3 Running


Cell Mounting

Target Holding Field

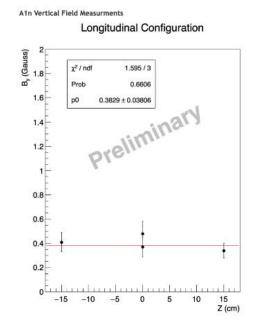


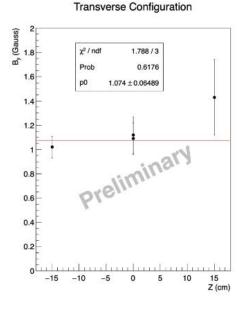

Field Measurements in Hall C

Magnetic Field Direction Measurement (by Murchhana Roy)

- A novel air-floated compass was developed and built as the commercially available compasses cannot achieve the desired level of precision.
- The magnetic field direction was determined from the surface normal of the aligned compass mirrors by mapping incident and reflected laser beam spots on a screen.
- The points were surveyed by JLab alignment group in absolute Hall C coordinate system.

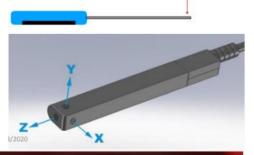
 Measured absolute direction of the target magnetic field in the Hall C coordinate system precisely to about ±0.1°.




Field Measurements in Hall C

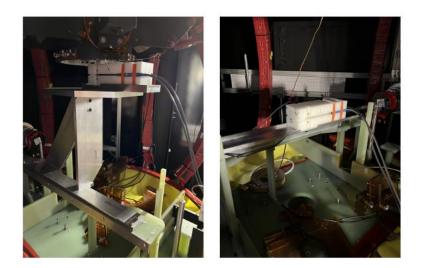
Holding Field Mapping (by Jixie Zhang and William Henry)

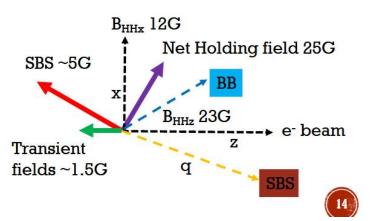
• Measure and correct the field gradient and vertical field components caused by the magnetic structures surrounding the target and fringe field of SHMS HB.


• Use 1D and 3D Hall probe mounted on a 3-axis movable slotted rack .

1D Probe

3D Probe



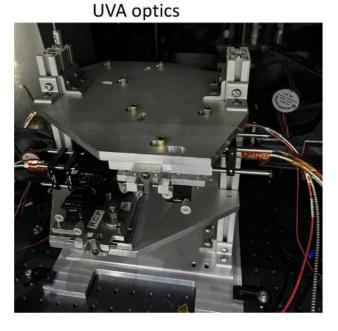


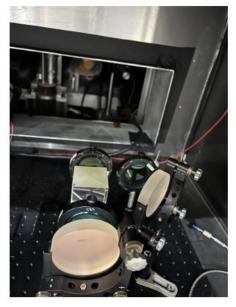
B-FIELD MEASUREMENTS

- Two methods used for field magnitude and direction - Gradient probe and a custom compass (We need the field direction to be within 2 milli radians (0.12 deg))
- Dry fit for mounting the devices and associated S/A was completed and measurement procedure established
- SBS and BB local mode operation OSP acquired in record time and plan was developed for field measurements

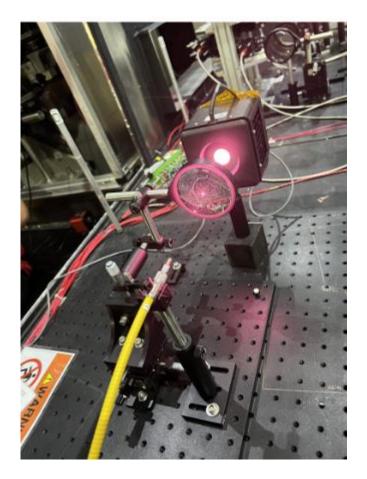
Laser System

Lasers for GEn-II

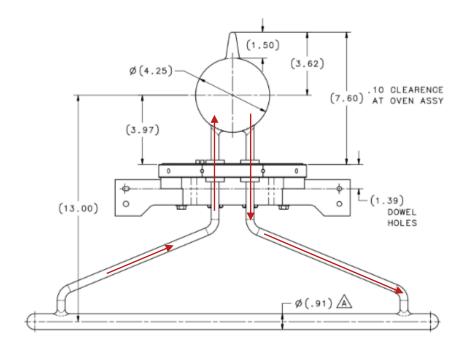

ControlPanel MFG Setting Info	D-Light Laser Co	ontroller					
Hingi -				Readings			
Later T (2) 22.0 1516 18 20 22 24 26 20 30 32 Current (A) 0 5 10 15 20 25 30 35 40 45	34 36 38 40 42 4445	Staion ID Dlight 224095 VHS Lamda_Set	TEC Output	Laser T (C) 26.98 RunTime 2789:23:33	Current (A) 40.0 Laser ON	VHG Landa, Read	
Later 7 (2) 1 3.0 1 516 10 20 22 24 25 20 30 32 Current (A) 0 5 10 15 20 25 30 35 40 45	34 36 38 40 42 4445	Station ID D-Light 227766 VHG Lamda_Set	TEC Output	Laser T (C) 33.01 RunTime 158.46.46	Current (A) 45.0 Laser ON	VHG Lamda_Read	
Later T (0) 25.0 15.16 19 20 22 24 26 28 30 32 Connet (4) 35.6 0 5 10 15 20 22 50 35 40 45	34 36 38 40 42 4445	Staion ID Dight 224094 VHS Lamda_Set	TEC Output	Laser T (C) 20.90 RunTime 3797/00:03	Current (A) 35.0 Laser	VHG Landa, Read	
Later 7 (0) 98.0 2516 19 20 22 24 28 28 30 32 Current (A) 0 5 10 15 20 25 30 35 40 45	54 36 58 40 42 4445	Staion ID Diight 225061 VHG Lamda_Set	TEC Output	Laser T (C) 29.40 RunTime 146:07:16	Current (A) 25.0 Laser ON	VHG Landa, Read	
Laier 7 (0) (36.0) 35.0) 55.0 0 5 10 15 20 22 34 28 28 30 32 Current IA 0 5 10 15 20 25 30 35 40 45		Staion ID Diight 225060 VHG Lamda_Set	TEC Output	Laser T (C) 29.97 RunTime 175:17:45	Current (A) 35.0 Leser	VHG Landa_Read	
Later T (0) 1 22.0 Current (A) 0 5 10 15 20 22 34 28 28 30 32 Current (A) 0 5 10 15 20 25 30 35 40 45	34 36 38 40 42 4445	Staion ID Dight 227681 VHG Lamda, Set	TEC Output	Later T (C) 31.96 RunTime 163:31:23	Current (A) 45.0 Laser ON	VHG Landa_Read	
Later 7 (C) 122.5 1516 18 28 22 24 28 28 30 32 Current (A) 15.0 5 10 15 20 25 30 33 40 45	34 36 38 40 42 4445	Rtaion ID Dight 234897 VHG Landa Set	TEC Output	Laser T (C) 32.49 RunTime 960:34:53	Current IAI 45.0 Laser ON	VHG Landa, Read	
antia 12.0 December 2010							

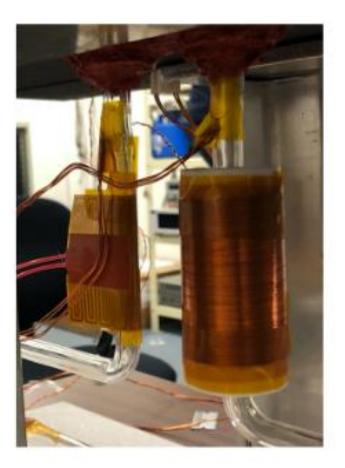


Lasers and laser optics

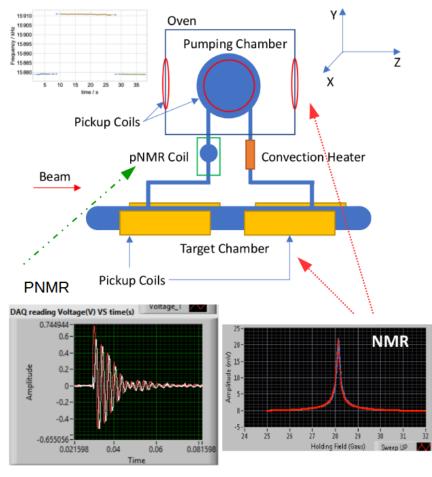

• The pumping of the polarized target happens from both sides of the pumping chamber ("Jlab" and "Uva" optics)

Jlab optics





Convection Heater



Polarimetry for ³He in Target Cell

EPR

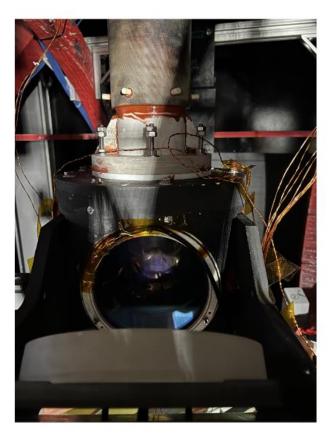
1. Adiabatic Fast Passage Nuclear Magnetic Resonance (AFP-NMR)

- Magnetic Resonance of ³He Nucleus
- Sweep the holding field under AFP condition to flip the Nucleon spin direction back and forth.
- Relative measurement, calibrate with water NMR or EPR.

2. Pulse NMR

- Use resonance RF pulse at ³He Larmor frequency to tilts the Nucleon spin to a certain angle.
- Relative measurement, calibrate with AFP-NMR.
- Implemented for the first time on polarized ³He target.

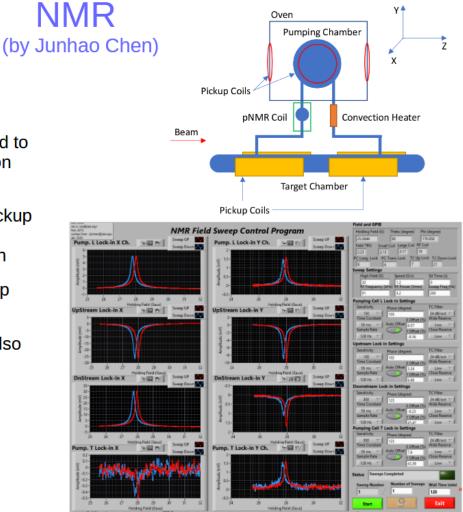
3. Electron Paramagnetic Resonance (EPR)


- Magnetic resonance of the alkali atoms
- Resonance shifted due to polarized ³He, get the resonance frequency difference by flipping the ³He polarization direction.
- Get ³He polarization from resonance frequency difference. Absolute measurement.

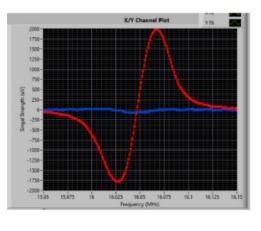
A4 /00 /0004

Hall C Collaboration Masting

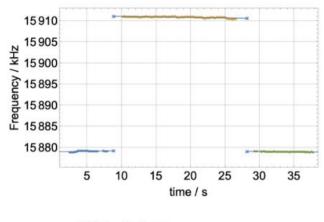
Jefferson Lab


Pumping chamber pick up coil

Pick up coil position: target in between NMR coil legs



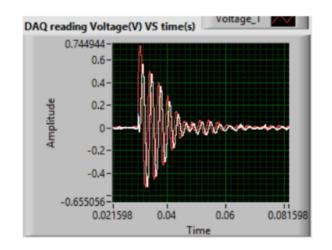
- AFP-NMR was the primary method to measure the ³He target polarization during the production run.
- Two pairs of pumping chamber pickup coils: one in longitudinal direction, another one in transverse direction
- Two pairs of target chamber pickup coils: upstream and downstream
- Target chamber pickup coils are also used to study convection speed



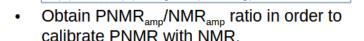
EPR System (by Melanie Rehfuss and Junhao Chen)

- EPR provides absolute polarimetry.
- EPR polarimetry provided calibrations to NMR system.
- Used a photo diode with D₁ light filter to collect D₂ light.
- The uncertainty for target polarimetry is about ±3%.

EPR FM Sweep

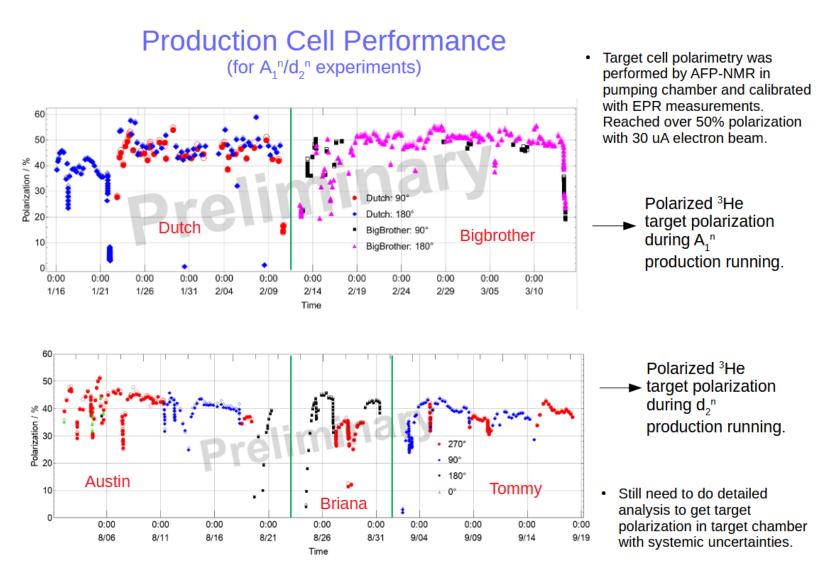


EPR AFP Sweep

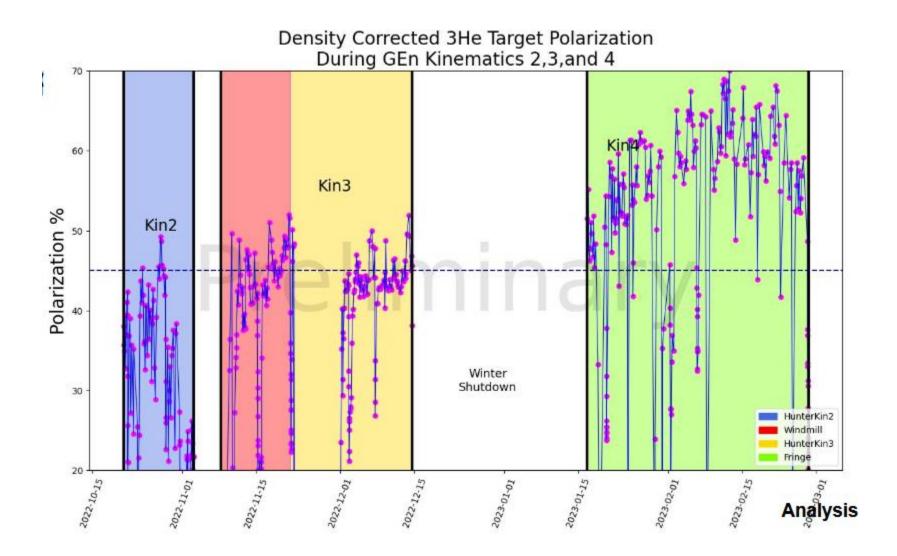


Pulse NMR (by Mingyu Chen)

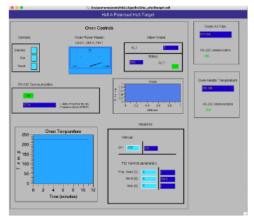
- Advantage: Took shorter time to complete measurement, less depolarization compare to AFP-NMR.
- PNMR was performed at transfer tube which was calibrated by AFP-NMR at pumping chamber.
- For most of the measurements, polarization from PNMR agrees with NMR within ±2%.
- However, the drift of holding field magnitude over time changed PNMR signal amplitude and introduce additional uncertainty.
- Still need to do detailed analysis to characterize this effect on PNMR signal and determine the systemic uncertainty for PNMR.



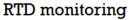
• Current fit for the signal by the FID fitting function to obtain PNMR amplitude A_0 . $S(t)=FID(t)=A_0\cos(\omega t+\phi_0)e^{-t/T_2}+a*t+b$

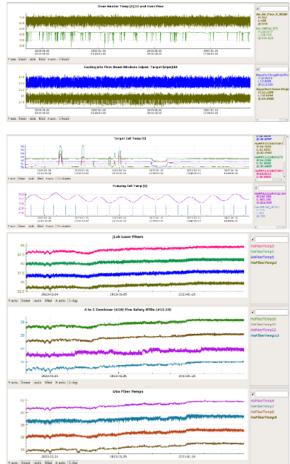


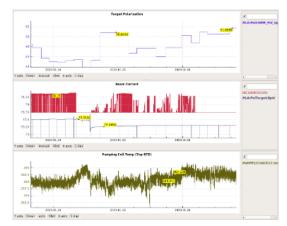
Hall C Performance

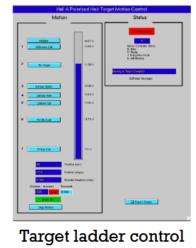


Hall A Performance

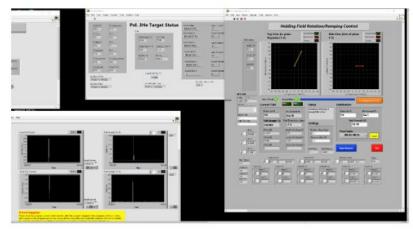

Jefferson Lab

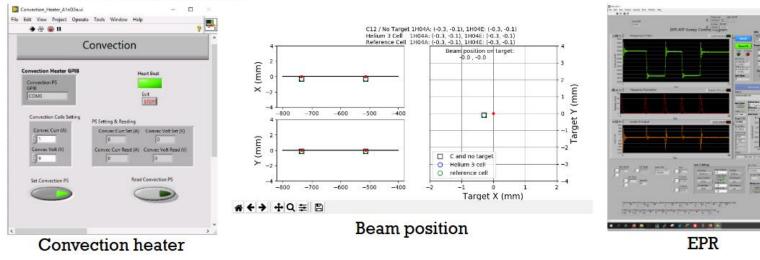



Oven control


ControlPo	nel MIPG Setting	8.60	D-Lig	ht Laser Co	ntroller					
Lane T (2) () 1 ha () and () () max	48.3.3.3				Nave D Digit 2411 Phi Lang La	The Configurat	Lane T. (2) 24.00 Restine	Current dia Mini a Lanne	Vici undu, faut	
Anno 1 mil	*******	****		4 4 H	North Contraction		27942828 1000 T (S) 1020 Reaffing 1704 (K)	Current (N) (41.3 berror (1.9)	Viti undu ficar	
Lauri () Jaco Careel II Jac	*****			_	Dates D Dependents mit Lasta, Sel 1 1 1 1		Level 1 (2) (11.00 Realities 2711/0611	Land Delay	Vec unda fina	
Lane T (C) (mean (second (c)) (c) (c)			****		Filmer D Deper 2 line mit Lassen, Ser () 1 () 740.790	The Confession Topological Top	inetia nation india	Current (N) Inter Lane	Vici anda Reel T. (Vician) Material	
ABART () Jack Current (c) Jack					Name B Bight 12100 Mic Lawin, Int J (101.00	** Codpat	teart () 31.07 Barline 135.754	Lanet BL Lanet Lanet Lanet	VIC UNRAFES	
Lane / Si U.S Current pa (4).5			_		Rane D Disprisions millionis Sel D 1000	10 Separ	Australia Tuestan Martine	ALS BEEN DH	Viti anda fina Di Lini Dadina	
Lauer T (C) (Current Inti (Carnet Inti (Carnet Inti					Datest D Copyr (Copy) omi Lasena, Las (Copyr (Copy)	** : : : : : : : : : : : : : : : : : :	Lase T.Q. 11.40 Refine Milleli	Law One of the	Vici umda final Principal Distante	
						e constant		Connert (K) Lines Official	Jacobia Maria	

Lasers





Slow Controls

Field rotation software

NMR polarimetry software

ONSITE POLARIZED 3HE TARGET TEAM

Gordon Cates

William Henry

Todd Averett

Gary Penman

Arun Tadepalli

Hunter Presley



David Flay*

(*now at Johns Hopkins)

JP Chen

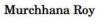
Kate Evans

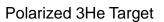
Jack Jackson

Polarized 3He Target

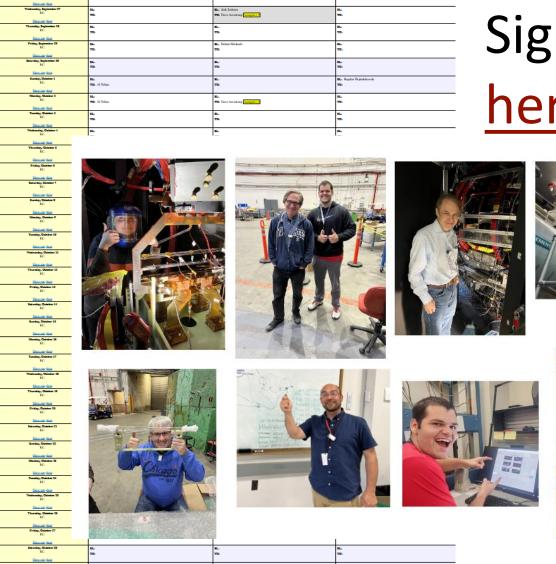

Postdocs

A. Tadepalli, JLab


Students



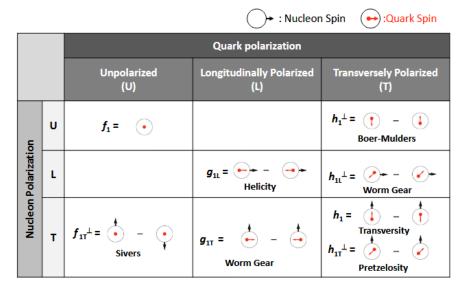
Mingyu Chen



Melanie Rehfuss

Summary

Sign up for shifts here ll



Polarized Helium-3 Experiments @ JLab

Asymmetries in Semi-Inclusive Deep-Inelastic $(e, e'\pi^{\pm})$ Reactions on a Longitudinally Polarized ³He Target at 8.8 and 11 GeV

Abstract

We propose a measurement of single-target and double spin azimuthal asymmetries (SSAs and DSAs) in semi-inclusive electroproduction of charged pions, using the upgraded CEBAF electron beam, the Hall A polarized ³He target as an effective polarized neutron target, and the newly approved SoLID spectrometer. The hardware setup is similar to that of experiment E12-10-006, with additional requirements of a longitudinally polarized target and a polarized beam. We also request a high beam polarization for E12-10-006 to measure DSAs with a transversely polarized target. The SSAs and DSAs, with longitudinal and transverse target spin, respectively, are related to two "worm-gear" transverse-momentum-dependent (TMD) parton distributions of the nucleon at leading twist. Both of the "worm-gear" TMD distributions require an interference between wave function components that differ by one unit of quark orbital angular momentum (OAM). as explicitly shown in several models. In addition, the DSAs with a longitudinal target spin will constrain the flavor decomposition of the quark helicity distribution of the nucleon and provide information on their transverse momentum dependence. All asymmetries will be measured with a high precision and a large kinematic coverage in a 4-D phase space of x, z, $P_{h\perp}$ and Q^2 . The systematic uncertainties are improved by fast target spin flips and a large coverage in the azimuthal angles. We request 35 PAC days of data taking on the longitudinally polarized ³He target.

2. PHYSICS MOTIVATION

2.1. "Worm-gear" functions, g_{1T} and h_{1L}^{\perp}

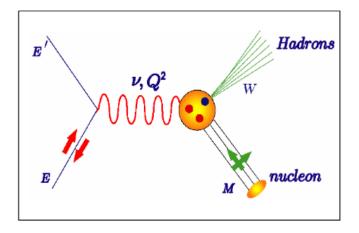
The main physics goal of this proposal is to provide direct experimental information for both "worm-gear" functions, g_{1T} and h_{1L}^{\perp} . They can be accessed through the double spin asymmetries $A_{LT}^{\cos(\phi_h - \phi_S)}$ with a transversely polarized target and the beam single spin asymmetries, $A_{UL}^{\sin 2\phi_h}$, with a longitudinally polarized target, respectively. The physics related to "worm-gear" functions, their measurement and their current experimental status will be discussed in this section.

https://www.jlab.org/exp_prog/proposals/11/PR12-11-007.pdf

• BACK UPS

Deep Inelastic Scattering

Unpolarized cross section: $\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2}{M} F_1(x, Q^2) \sin^2 \frac{\theta}{2} + \frac{1}{V} F_2(x, Q^2) \cos^2 \frac{\theta}{2} \right)$

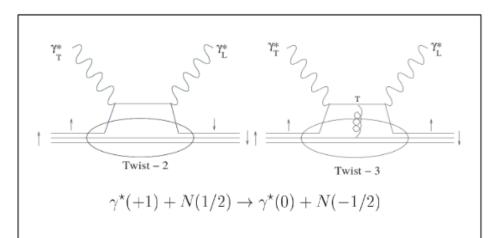

• Unpolarized structure functions F_1 and F_2 contain information about the momentum structure of the target nucleon.

Polarized cross section:

$$\frac{d^2\sigma}{dE'd\Omega}(\checkmark \Uparrow -\uparrow \Uparrow) = \frac{4\alpha^2E'}{MQ^2\nu E}[(E+E'\cos\theta)g_1(x,Q^2) - \frac{Q^2}{\nu}g_2(x,Q^2)] = \Delta\sigma_{\parallel}$$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\mathrm{E}'\mathrm{d}\Omega}(\mathbf{4} \Rightarrow -\mathbf{\uparrow} \Rightarrow) = \frac{4\,\alpha^2 \sin\theta\,\mathrm{E'}^2}{\mathrm{M}\,\mathrm{Q}^2 \mathrm{v}^2 \mathrm{E}} [\nu\,\mathrm{g}_1(\mathbf{x},\mathrm{Q}^2) + 2\,\mathrm{E}\,\mathrm{g}_2(\mathbf{x},\mathrm{Q}^2)] = \Delta\,\sigma_\perp$$

• Polarized structure functions g_1 and g_2 encode information about the spin structure of the target nucleon.



 Q^2 = 4-momentum transfer squared of the virtual photon $v = E \cdot E'$ = energy transfer θ = scattering angle x = Fraction of nucleon momentum carried by the struck quark

g₂ and Quark-Gluon Correlations

- g_2 has no interpretation in naive quark parton model, provides information on quark-gluon correlation.
- g_2 is among the cleanest higher twist observables – contributes to leading order (twist-2 is leading twist) at the transverse spin asymmetry.

$$g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \bar{g}_2(x, Q^2)$$

• Twist-2 term (Wandzura & Wilczek).

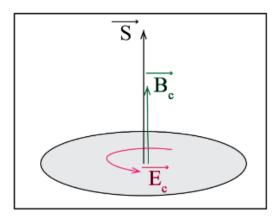
$$g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{g_1(y, Q^2)}{y} dy$$

• Twist-3 term with a suppressed twist-2 piece (*Cortes, Pire & Ralston*).

$$\overline{g_2}(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left(\frac{m_q}{M} h_T(y,Q^2) - \xi(y,Q^2) \right) \frac{dy}{y}$$
Transversity
Quark-gluon correlation

d₂: Clean Probe of Quark-Gluon Correlations

- d_2 is a clean probe of quark-gluon correlations / higher twist effects - third moment of the linear combination of the spin structure function.


$$d_{2}(Q^{2}) = 3\int_{0}^{1} x^{2} [2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})] dx = 3\int_{0}^{1} x^{2} \bar{g_{2}}(x,Q^{2}) dx$$

- Related to matrix element in OPE, which represents average transverse color Lorentz force on the struck quark due to the remnant system and it is cleanly computable using Lattice QCD.
- Connected to "color polarizability".

$$\chi_{E} = \frac{(4d_{2}+2f_{2})}{3} \qquad \chi_{B} = \frac{(4d_{2}-f_{2})}{3}$$

• f_2 is a twist-4 contribution can be extracted from the first moment of g_1 .

$$\Gamma_1 \! = \! \int_0^1 \! g_1 dx \! = \! \mu_2 \! + \! \frac{M^2}{9Q^2} (a_2 \! + \! 4d_2 \! + \! 4f_2) \! + \! O\!\left(\! \frac{\mu^6}{Q^4}\!\right)$$

Response of the color \vec{B} and $_{5}$ \vec{E} field to the nucleon polarization

Jefferson Lab