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Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.
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Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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3D Imaging of the Nucleon
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COMPASS collaboration 

25 institutions from 13 countries  
– nearly 200 physicists  

COMPASS web page: http://wwwcompass.cern.ch 

Common Muon and Proton Apparatus for Structure and Spectroscopy 

• CERN SPS north area 
• Fixed target experiment  
• Approved in 1997 
• Taking data since 2002 
 
Wide physics program 
COMPASS-I 
• Data taking 2002-2011 
• Muon  and hadron beams 
• Nucleon spin structure 
• Spectroscopy 
 
COMPASS-II  
• Data taking 2012-2022 
• Primakoff 
• DVCS (GPD+SIDIS) 
• Polarized Drell-Yan 
• Transverse deuteron SIDIS 
 

See also COMPASS talks by J.Giarra (DVCS) and J.Matousek (SIDIS) 
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

NNPDF, EPJ C77 (2017)

W. Armstrong et al., arXiv: 1708.00888.

Wigner distributions/
Generalized TMDs

Parton Distribution Functions 
(PDFs)

Transvers momentum distributions 
(TMDs)

Generalized parton distributions 
(GPDs)

TMD handbook 161

Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Cammarota, et al. (JAM), PRD 102 (2020).

Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
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Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
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mon to denote both functions by the same
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(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
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tion about transverse degrees of freedom is
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W(x, ⃗kT, b⃗T)

∫ d2 ⃗kT

∫ d2 ⃗kT

∫ d2b⃗T ∫ d2b⃗T

xf(x)

Can we calculate all of them in 
lattice QCD?
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on the 

lattice

f̃(x, Pz)

Related by Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eiz(xPz)⟨P | ψ̄(z)f(x) = ∫
dz−

2π
e−ib−(xP+)⟨P | ψ̄(z−)

×
γ+

2
W[z−,0]ψ(0) |P⟩ ×

γz

2
W[z,0]ψ(0) |P⟩

• X. Ji, PRL 110 (2013); SCPMA 57 (2014);

• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, 

RMP 93 (2021).
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Systematic calculation of x-dependence for :x ∈ [xmin, xmax]

Renormalization Perturbative Matching

f(x, μ) = ∫
∞

−∞

dy
|y |

C−1 ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )
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Large-Momentum Effective Theory (LaMET)
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f(x, μ) = ∫
∞

−∞

dy
|y |

C−1 ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )
Systematic calculation of x-dependence for :x ∈ [xmin, xmax]

Renormalization

OΓ
B(z, a) = ψ̄0(z)ΓW0[z,0]ψ0(0)

= e−δm(a)|z| ZO(a)OΓ
R(z)

δm(a) =
m−1

a
+𝒪(ΛQCD)

CMS
0 (μ, z) = CLRR

0 (μ, z)e−mMS
0 |z|

Renormalon ambiguity

Matching to the OPE of Pz=0 matrix element:

• Self renormalization

• Static potential

• …

Leading-renormalon resummation (LRR)

• Subtraction of linear divergence

• Subtraction of leading renormalon ambiguity

Y. Huo, et al. (LPC), NPB 969 (2021).

X. Gao, YZ, et al., PRL 128 (2022).

• Holligan, Ji, Lin, Su and Zhang, NPB 993 (2023);

• Zhang, Ji, Holligan and Su (ZJHS23), PLB 844 (2023).

= δm(a) |z | ∝
|z |
a

0z

Linear divergence in the Wilson line:
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Large-Momentum Effective Theory (LaMET)
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Systematic calculation of x-dependence for :x ∈ [xmin, xmax]

Perturbative Matching
• Next-to-next-to-leading order (NNLO) kernel 

• Resummation of small-x logarithms  (DGLAP evolution) 

• Subtraction of leading renormalon  

• Resummation of large-x (threshold) logarithms  

αs ln
μ

2xPz

C(x/y) → CLRR(x/y)

αs ln(1 − x/y)
(1 − x/y)

• Chen, Zhu and Wang, PRL 126 (2021);

• Li, Ma and Qiu, PRL 126 (2021).

• X. Gao, K. Lee, and YZ et al., PRD 103 (2021);

• Y. Su, J. Holligan et al., NPB 991 (2023).

• Holligan, Ji, Lin, Su and Zhang, NPB 993 (2023);

• Zhang, Ji, Holligan and Su (ZJHS23), PLB 844 (2023).

• X. Gao, K. Lee, and YZ et al., PRD 103 (2021);

• X. Ji, Y. Liu and Y. Su, arXiv:2305.04416.

f(x, μ) = ∫
∞

−∞

dy
|y |

C−1 ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )
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Short-distance factorization in coordinate space
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h̃(λ = zPz, z2μ2) =
∞

∑
n=0

Cn(z2μ2)
(−iλ)n

n!
an(μ) + 𝒪(z2Λ2

QCD) ,

• Extraction of the lowest moments;


• Calculation of the light-cone correlation up to ;


• Fitting the x-dependence with model assumption of the PDF.

λmax = zmaxPz

= ∫
1

0
dα 𝒞(α, z2μ2) h(αλ, μ) + 𝒪(z2Λ2

QCD) ,
f(x, μ) = ∫

∞

−∞

dλ
2π

e−ixλ h(λ, μ)

• A. Radyushkin, PRD 96 (2017);

• K. Orginos et al., PRD 96 (2017);

• T. Izubuchi, YZ, et al., PRD 98 (2018).

Towards systematic control: 

1) Higher-order matching (NNLO);


2) Resummation of ;


3) Threshold resummation of  or 

αs ln(z2μ2)

αi
s lnj n αs ln(1 − α)/(1 − α)

• X. Gao, K. Lee, and YZ et al., PRD 103 (2021);

• X. Ji, Y. Liu and Y. Su, arXiv:2305.04416.

• Chen, Zhu and Wang, PRL 126 (2021);

• Li, Ma and Qiu, PRL 126 (2021).
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State-of-the-art calculation of pion PDF
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FIG. 2: Top: The comparison of C0(↵s(µ), z
2µ2

) from

the fixed-order (dotted), renormalization group resummation

(dashed), and the leading renormalon resummation (solid).

Bottom: m0(⌧) extracted from leading renormalon resumma-

tion with PV as a IR regulator.

formalism on the top panel in Fig. 2. The error bands in
RGR are obtained by varying the resummation scale from
0.75z�1 to 1.5z�1, corresponding to about 30% change
in the coupling. Going beyond the lower bound in our
data range, the perturbation theory breaks down. While
there is a large di↵erence from NLO to NNLO in fixed-
order calculations with or without renormalization group
improvement, the LRR results show much better conver-
gence in the perturbative region z < 0.3 fm, and much
smaller dependence on the scale variation, indicating that
NNLO term is already dominated by the leading renor-
malon.

We show the NLO LRR-improved m0 result as blue
band together with fixed-order results on the lower panel
in Fig. 2. By including the leading renormalon, there
is now a clear window near z = 0.12 fm for a constant
m0(⌧) = 0.161+0.025

�0.002 GeV for NLO with much smaller
uncertainty. Thus Eq. (2) achieves the linear-z accu-
racy when the leading renormalon series is resummed.
We also show the NNLO renormalon-resummed results
m0(⌧) = 0.164+0.016

�0.003 GeV as the red band to demonstrate
the good convergence with this method, consistent with
the blue band and has smaller scale dependence at small
z. The di↵erence between the non-perturbative lattice
result and the perturbation series is well described by
the linear dependence in z in the perturbatively-reliable

region. This gives us confidence that we have reached
twist-three power accuracy for describing the Pz = 0 ma-
trix element.

PDF matching to leading power accuracy We com-
mented after Eq. (2) that the leading-power correction
term m0(⌧) multiplies the twist-two matrix elements in
the same way independent of their spin. This observa-
tion is still valid when m0(⌧) plays the additional role
to account for the scheme dependence in regularizing
the leading renormalon divergence in the coe�cient func-
tion Ck(↵s). This is because all Ck(↵s) has the exactly
the same leading renormalon series as a quark “pole”
mass. Moreover, this leading renormalon series expo-
nentiates such that it matches exactly the mass renor-
malization of the Wilson line in the quasi-PDF operator.
Therefore, if we renormalize the large-P z spatial correla-
tors hB(z, P z, a) with the ZR(z, a, µ, ⌧) and m0(⌧) from
the previous section, the resulting hR(z, P z, µ, ⌧) can be
matched to light-cone PDFs with ⌧ prescription, e.g., PV,
for the leading renormalon in the matching coe�cient
without any explicit leading power corrections.

We apply again the leading-renormalon resummed co-
e�cient functions and the corresponding m0 to the anal-
ysis of the pion PDF lattice data [13], with results shown
in Fig. 3. The results from fixed-order perturbation the-
ory from Fig. 1 are shown again for comparison. The
m0(⌧) used in calculating the blue (red) band is from the
bottom plot in Fig. 2. The error bands are obtained by
varying the starting point of the RG evolution in both
m0(⌧) extraction and perturbative matching. The re-
sults show much reduced error bands from LRR because
of the much smaller uncertainty in m0(⌧). Interestingly,
the NNLO+RGR+LRR result suggests a even smaller
error after matching, because the scale variation in the
RGR matching cancels most of the corresponding m0 dif-
ference in coordinate space. Moreover, the consistency in
x > 0.2 between NLO and NNLO suggests good conver-
gence of the perturbation theory after LRR, the same as
our observation in coordinate space.

FIG. 3: The e↵ect of leading-renormalon resummation (the

red and blue band) on the pion PDF, compared with fixed-

order results in the background.

Subtraction 
of 

Leading-renormalon 
resummation (LRR) NNLO Small-x 

resummation
Threshold 
resumation

Subleading 
renormalon

Discretizati
on effects

BNL-
ANL21 ✔︎ ✔︎

ZJHS23 ✔︎ ✔︎ ✔︎ ✔︎

Zhang, Ji, Holligan and Su (ZJHS23), PLB 844 (2023)Gao, YZ et al. (BNL-ANL21), 128 (2022).

δm
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Gauge-invariant 
bilinear

Current-current 
correlator

Free bilinear in a 
physical gauge

Light-cone 
bilinear

ψ̄(z)ΓW[z,0]ψ(0)

Jμ(z)Jν(0)

ψ̄(z)Γψ(0)
G(A)=0

G(A) = A0, Az, ∇ ⋅ A

ψ̄(ξ−)γ+W[ξ−,0]ψ(0)

ψ̄(ξ−)γ+ψ(0)
A+=0

Or

• Y. Hatta, X. Ji, and YZ, PRD 89 (2014);

• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

• Liu and Dong, PRL 72 (1994);

• Detmold and Lin, PRD 73 (2006);

• Braun and Müller, EPJC 55 (2008);

• A Chambers et al. (QCDSF), PRL 118 (2017)

• Ma and Qiu, PRL 120 (2018).

P → ∞
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Quasi-PDF in the Coulomb gauge
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h̃( ⃗z, ⃗p, μ) =
1

2pt
⟨p | ψ̄( ⃗z )γtψ(0)

∇⋅A=0
|p⟩ , ⃗z // ⃗p

f̃(x, | ⃗p | , μ) = | ⃗p |∫
∞

−∞

d | ⃗z |
2π

eix ⃗p⋅ ⃗z h̃( ⃗z, ⃗p, μ)

• X. Ji, J.-H. Zhang and YZ, PRL 111 (2013);

• Y. Hatta, X. Ji, and YZ, PRD 89 (2014);

• X. Ji, J.-H. Zhang and YZ, PLB 743 (2015);

• Y.-B. Yang, R. Sufian, YZ, et al. PRL 118 (2017).

Jaffe-Manohar sum rule and its physical significance A LaMET Approach for Lattice Calculation Outlook Summary

Physical significance of the Jaffe-Manohar sum rule

Weizsäcker-Williams approximation

• For a static charge, the electric field is purely longitudinal (the photon
field is purely virtual): ~E = ~Ek = ~r', ~r⇥ ~Ek = 0;

• As the charge moves with velocity �, the field lines contract in the
transverse direction;

• The moving charge generates ~B = ~r⇥ ~A = ~r⇥ ~A?, while the changing
~A? in turn generates ~E? = �(@/@t)~A?;

• ~E? (~B) gets enchanced by a factor of � (��), while ~Ek is suppressed by
a factor of ��2 (� = 1/

p
1 � �2).

TQHN Yong Zhao

Static charge Moving charge

ΔG = ⟨P∞ | (E × A)3 |∇⋅A=0 |P∞⟩

First proposed in the lattice 
calculation of gluon helicity
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• Large-momentum factorization:

Factorization
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C(ξ,
μ
pz ) = δ(ξ−1) +

αsCF

2π
C(1)(ξ,

μ
pz ) + 𝒪(α2

s )

C(1)(ξ,
μ
pz ) = C(1)

ratio(ξ,
μ
pz ) +

1
2 |1 − ξ |

+ δ(1 − ξ)[−
1
2

ln
μ2

4p2
z

+
1
2

− ∫
1

0
dξ′￼

1
1 − ξ′￼]

C(1)
ratio(ξ,

μ
pz ) = [Pqq(ξ)ln

4p2
z

μ2
+ ξ − 1]

[0,1]

+(1)

+{Pqq(ξ)[sgn(ξ)ln |ξ |+sgn(1−ξ)ln |1−ξ |]+sgn(ξ) +
3ξ − 1
ξ − 1

tan−1 ( 1 − 2ξ

|ξ | )
1 − 2ξ

−
3

2 |1 − ξ | }
(−∞,∞)

+(1)

f̃(x, Pz, μ) = ∫
dy
|y |

C( x
y

,
μ

|y |Pz )f(y, μ) + 𝒪(
Λ2

QCD

x2P2
z

,
Λ2

QCD

(1 − x)2P2
z

)

ξ→∞⟶
1
ξ2

• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);

• Y. Ma and J. Qiu, PRD 98 (2018);

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD 98 (2018)
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• Short-distance factorization:

Factorization

14

𝒞(u,
μ
pz ) = δ(u − 1) +

αsCF

2π
𝒞(1)(u,

μ
pz ) + 𝒪(α2

s )

𝒞(1)(u, z2μ2) = 𝒞(1)
ratio(u, z2μ2) +

1
2

δ(1 − u)(1 − ln
z2μ2e2γE

4 )

𝒞(1)
ratio(u, z2μ2) = [−Pqq(u)ln

z2μ2e2γE

4
−

4 ln(1 − u)
1 − u

+ 1 − u]
[0,1]

+(1)

+[3u − 1
u − 1

tan−1 ( 1−2u
|u | )

1 − 2u
−

3
|1 − u | ]

(−∞,∞)

+(1)

u→∞⟶
1
u2

h̃(z, Pz, μ) = ∫ du 𝒞(u, z2μ2)h(uλ̃, μ) + 𝒪(z2Λ2
QCD)

A. Radyushkin, PRD 96 (2017).
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Wilson-clover valence fermion on 2+1 flavor HISQ gauge 
configurations (HotQCD).

Lattice setup

15

3

|~p| (GeV) ~n ~k ts/a (#ex,#sl)
0 (0,0,0) (0,0,0) 8,10,12 (1, 16)

8 (1, 32)
1.72 (0,0,4) (0,0,3) 10 (3, 96)

12 (8, 256)
8 (2, 64)

2.15 (0,0,5) (0,0,3) 10 (4, 128)
12 (8, 256)
8 (1, 32)

2.24 (3,3,3) (2,2,2) 10 (2, 64)
12 (4, 128)

TABLE I. Details of lattice setup, where (#ex,#sl) are the
numbers of exact and sloppy inversions per configuration.

and volume L3
s⇥Lt = 483⇥64. We use tadpole-improved

clover Wilson valence fermions on the hypercubic (HYP)
smeared [38] gauge background, with a valence pion mass
m⇡ = 300 MeV. To improve the signal of boosted pions at
~p = (2⇡)/(Lsa)~n, we utilize the momentum-smeared [16]

pion source with optimized quark boost ~k [25, 26].
Since lattice simulations involve sampling from sta-

tistical ensembles to estimate expectation values, high-
momentum modes tend to have larger statistical fluctu-
ations due to their oscillatory nature. Using an o↵-axis
momentum ~n = (nx, ny, nz) one may achieve the same
|~n| with smaller nx,y,z and less statistics. In this study,
we employ 109 gauge configurations and perform multi-
ple exact and sloppy Dirac operator inversions on each of
them using the All Mode Averaging technique [39]. We
use ~n = (0, 0, 0), two on-axis ~n = (0, 0, nz) with nz = 4, 5
which correspond to |~p| = 1.72 and 2.15 GeV, and one o↵-
axis ~n = (3, 3, 3) which corresponds to |~p| = 2.24 GeV.
Three time separations ts/a = 8, 10, 12 are computed
to eliminate the excited-state contamination. Since the
quark propagators are the same, we calculate the GI
qPDF with 1-step HYP-smeared Wilson lines and the
CG qPDF during contraction at no additional cost. More
details of the statistics are shown in Table I.

For a 4D lattice of spatial volume V , we fix QCD in
the CG by finding the gauge transformation ⌦ of link
variables Ui(t, ~x) that minimizes the criterion [40, 41]

F [U⌦] =
1

9V

X

~x

X

i=1,2,3

⇥
� ReTr U⌦

i (t, ~x)
⇤
, (13)

at a precision of ⇠ 10�7 on each time slice t. When the
observable is not gauge invariant, the above precision and
the presence of Gribov copies [42, 43] will a↵ect the lat-
tice result. Despite some proposals for attacking the Gri-
bov problem [44–47], there are still no complete solution.
Nevertheless, lattice studies of SU(2) Yang-Mills theory
show that the Gribov copies only a↵ect the gluon prop-
agator in the far infrared region [48], which implies that
they have little impact on the short-range correlations
that dominate the PDF at moderate x.

Since QCD has been proved to be renormalizable in the
CG [49–51] without linear divergences [52], the renormal-

FIG. 1. CG and GI ratios. The bands are obtained by match-
ing the PDF fitted from GI ratios at nz = 4, 5 and z 2 [3a, 6a].

ization of CG correlators is reduced to quark wave func-
tion renormalization, which is multiplicative like the GI
case [53–55] except for being z-independent.
With the bare matrix elements, we first check the

consistency between CG and GI correlations at short
distance. With a simple paramterization of the PDF,
fv(x) / x

↵(1�x)� , we fit the ratio of GI correlations [34]

M(z, P z
, a) =

h̃
GI(z, P z

, a)

h̃GI(z, 0, a)

h̃
GI(0, 0, a)

h̃GI(0, P z, a)
, (14)

at z 2 [3a, 6a] and nz = 4, 5, with the NLO SDF formula.
Then, we match the fitted PDF to the CG correlations
using Eq. (10) and compare them to the lattice results
in Fig. 1. After matching, the fitted PDF can describe
the CG ratios within 1� error, implying that the PDFs
calculated from the CG and GI qPDFs must also be con-
sistent at moderate x. The slight deviations could come
from di↵erent O(z2⇤2

QCD) corrections that are ignored in
the SDF formulas or simply the statistical fluctuations.
Then we continue to the LaMET analysis. First, both

bare CG and GI correlations are renormalized in the hy-
brid scheme [20], where the ratio scheme in Eq. (14) is
used for z  zs with zs = 4a and 2

p
3a for on-axis and o↵-

axis momenta, repsectively. At z > zs, the linear diver-
gence in the GI correlation is subtracted with the method
in Ref. [56], and m0 is fitted with the leading-renormalon
resummation (LRR) approach in Refs. [21, 22], leaving
an overall renormalization to be fixed by a continuity
condition at z = zs [20]. Meanwhile, the renormalization
of CG correlations is simply accomplished with the con-
tinuity condition, which leads to nice continuum limit as
verified with a finer lattice in App. C. Fig. 2 compares
the hybrid-scheme CG and GI correlations. Both corre-
lations fall close to zero as z increases, but the errors in
the GI case are significantly larger due to the exponen-
tial enhancement by renormalization. In contrast, the
errors in the CG correlation remain small at large z. Al-
though at small z the CG correlation has slightly bigger

a = 0.06 fm

mπ = 300 MeV

L3
s × Lt = 483 × 64

#ex and #sl: numbers of exact and 
sloppy inversions per configuration

Ncfg = 109

For nz=(3,3,3): 

half the statistics for nz=(0,0,5)

• T. Izubuchi, L. Jin et al., PRD 100 (2019);

• X. Gao, N. Karthik, YZ et al., PRD 102 (2020).
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• Find the gauge transformation  of link variables  that 
minimizes:


• Gauge-variant correlations may differ in different Gribov copies.


• In SU(2) Yang-Mills theory, different Gribov copies only affects the 
gluon propagator at far infrared region , though 
the ghost propagator are more sensitive to them.


• 🧐: Gribov copies should only affect large  correlations in 
physical states, or PDF at small x where LaMET does not work.

Ω Ui(t, ⃗x)

|q | ≲ 0.2 GeV

|z |

Coulomb gauge fixing

16

F[UΩ] =
1

9V ∑⃗
x

∑
i=1,2,3

[−re Tr UΩ
i (t, ⃗x)] Precision ~ 10-7

A. Mass, Annals. Phys. 387 (2017).
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Bare matrix elements

17

GI CG

t = 0t = ts t = 0t = ts

1-step hypercubic smeared Wilson line No Wilson line

Same quark propagators, free to calculate both!
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Rotational symmetry: on-axis V.S. off-axis momenta

Bare matrix elements

18

5

Finally, the CG correlations can also be used to cal-
culate broader parton physics such as generalized par-
ton distributions and transverse-momentum distribu-
tions (TMDs), which are more computationally demand-
ing than the PDFs. In particular, the TMD calcula-
tions will benefit significantly from the absence of staple-
shaped Wilson lines—whose storage and contractions
consume much memory and time—and simplified renor-
malization [63–69]. Since the boosted quarks in a physi-
cal gauge capture the correct collinear partonic degrees of
freedom, their 3D correlation should be matchable to the
physical TMD [70–74], which will be studied in a future
work.
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Appendix A: Two-point and three-point functions

To determine the bare matrix elements of pion ground
state, we first need the two-point functions C2pt(ts; ~p)
which will provide energy spectrum created by the pion
source and corresponding overlap amplitudes [25]. We
utilize the Guassian momentum smeared sources to im-
prove the signal of boosted pion at momentum ~p =
(2⇡)/(Lsa)~n. We use ~n = (0, 0, 0), two on-axis ~n =
(0, 0, nz) with nz = 4, 5 which correspond to |~p| = 1.72
and 2.15 GeV, and one o↵-axis ~n = (3, 3, 3) which corre-
sponds to |~p| = 2.24 GeV. The optimized quark boost pa-
rameters and statistics are shown in Table I. In Fig. 5, we
show the e↵ective mass evaluated from two-point func-
tions as a function of time separation ts. At ts & 10a

FIG. 5. The e↵ective mass evaluated from two-point functions
as a function of ts are shown. The short colored lines on
the right side are estimated from the disperion relation E =p

~p2 +m2
⇡ with m⇡ = 300 MeV.

FIG. 6. The black arrows are the zig-zag Wilson lines for GI
matrix elements with o↵-axis momentum.

the e↵ective mass, dominated by the pion ground state,
agree with the short colored lines on the right side esti-
mated from the dispersion relation E =

p
~p2 +m2

⇡ with
m⇡ = 300 MeV. What’s more, the signal of |~p| = 2.24
GeV case is compatible to the 2.15 GeV case though the
former only takes half of the statistics. This suggests
that the o↵-axis ~n can achieve the same momentum with
less computational cost compared to the on-axis ones.

To extract the the quasi-PDF matrix elements, we need
to compute the three point functions C3pt(⌧, ts; ~p). For
the case of CG qPDF, we directly do the contraction of
the quark propagators without Wilson line, using space
separation ~z along the direction ~n. As for the case of GI
qPDF, we use straight Wilson lines ~z = (0, 0, z3) for on-
axis momentum and zig-zag Wilson lines for the o↵-axis
momentum, as shown in Fig. 6. As a result, the distance
of a o↵-axis separation ~z = {b, b, b} is |~z| =

p
3b, while

the total length of the Wilson line is l = 3b. We construct

Zig-zagged Wilson line for GI bilinear
6

FIG. 7. The C3pt/C2pt ratios R(⌧ ; ~z, ~p, ts) at ~z = ~0 of |~p| =
2.15 and 2.24 GeV.

the ratios R(⌧, ~z, ~p, ts) = C3pt(⌧, ts; ~p)/C2pt(ts; ~p) to take
the advantage of the correlation between two-point and
three-point functions. In the ts, ⌧ ! 1 limit, the ratio
gives the ground-state matrix elements. In this work, we
have calculated three time separation ts and done a two-
state fit [25] for the ground state extrapolation. In Fig. 7,
we show ratios (data points) at ~z = ~0 of the two large
momenta and the fitted results (colored bands). The
black boxes are the ground state matrix elements, where
good agreement and similar precision can be observed,
though the |~p| = 2.24 GeV case only used half of the
statistics for |~p| = 2.15 GeV. This is probably due to the
smaller momentum modes along each axis.

Appendix B: Bare matrix elements and rotational

symmetry

In Fig. 8, we show the bare CG qPDF matrix elements
as a function of |~z|. It can be seen that the matrix ele-
ments from on-axis and o↵-axis cases overlap with each
other, especially at zero momentum with high precision,
which implies that the rotational symmetry is well pre-
served. The bare matrix elements of GI case are shown
in the upper panel of Fig. 9. Though the di↵erence of the
large-momentum matrix elements is not obvious due to
the large errors, there is noticeable deviation for the pre-
cise zero-momentum matrix elements. It is evident that
zig-zag Wilson line cannot accurately approximate the
straight Wilson line. We note that the length of the zig-
zag Wilson line is l =

p
3|~z|. Therefore, in the lower panel

FIG. 8. The bare matrix elements of CG qPDF.

FIG. 9. The bare (upper panel) and dm subtracted matrix
elements (lower panel) of GI qPDF.

of Fig. 9 we show the matrix elements after subtracting
the linear divergence e

�dm·l, where dm can be derived
from the heavy quark potential (dm · a = 0.1586) [56].

As one can see, (edm·|~z|)
p
3 badly overshoots the linear

divergence of matrix elements at o↵-axis ~z, which makes
their deviation from the on-axis ~z matrix elements even
bigger. The reason could be that the HYP smearing dis-
torted the UV physics within a hypercube and the zig-
zag Wilson lines contains so many short links. However,
smearing is essential to improving the signal of GI qPDF
matrix elements, so this obstacle cannot be bypassed. In
summary, to use o↵-axis momenta with reasonable sig-
nal and rotational symmetry, the CG qPDF is the better
choice.

6

FIG. 7. The C3pt/C2pt ratios R(⌧ ; ~z, ~p, ts) at ~z = ~0 of |~p| =
2.15 and 2.24 GeV.

the ratios R(⌧, ~z, ~p, ts) = C3pt(⌧, ts; ~p)/C2pt(ts; ~p) to take
the advantage of the correlation between two-point and
three-point functions. In the ts, ⌧ ! 1 limit, the ratio
gives the ground-state matrix elements. In this work, we
have calculated three time separation ts and done a two-
state fit [25] for the ground state extrapolation. In Fig. 7,
we show ratios (data points) at ~z = ~0 of the two large
momenta and the fitted results (colored bands). The
black boxes are the ground state matrix elements, where
good agreement and similar precision can be observed,
though the |~p| = 2.24 GeV case only used half of the
statistics for |~p| = 2.15 GeV. This is probably due to the
smaller momentum modes along each axis.

Appendix B: Bare matrix elements and rotational

symmetry

In Fig. 8, we show the bare CG qPDF matrix elements
as a function of |~z|. It can be seen that the matrix ele-
ments from on-axis and o↵-axis cases overlap with each
other, especially at zero momentum with high precision,
which implies that the rotational symmetry is well pre-
served. The bare matrix elements of GI case are shown
in the upper panel of Fig. 9. Though the di↵erence of the
large-momentum matrix elements is not obvious due to
the large errors, there is noticeable deviation for the pre-
cise zero-momentum matrix elements. It is evident that
zig-zag Wilson line cannot accurately approximate the
straight Wilson line. We note that the length of the zig-
zag Wilson line is l =

p
3|~z|. Therefore, in the lower panel

FIG. 8. The bare matrix elements of CG qPDF.

FIG. 9. The bare (upper panel) and dm subtracted matrix
elements (lower panel) of GI qPDF.

of Fig. 9 we show the matrix elements after subtracting
the linear divergence e

�dm·l, where dm can be derived
from the heavy quark potential (dm · a = 0.1586) [56].

As one can see, (edm·|~z|)
p
3 badly overshoots the linear

divergence of matrix elements at o↵-axis ~z, which makes
their deviation from the on-axis ~z matrix elements even
bigger. The reason could be that the HYP smearing dis-
torted the UV physics within a hypercube and the zig-
zag Wilson lines contains so many short links. However,
smearing is essential to improving the signal of GI qPDF
matrix elements, so this obstacle cannot be bypassed. In
summary, to use o↵-axis momenta with reasonable sig-
nal and rotational symmetry, the CG qPDF is the better
choice.

CG matrix elements precisely preserve the 3D rotational symmetry, 
which is broken for GI matrix elements with a zig-zagged Wilson line 

B. Musch et al., PRD 83 (2011).
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Renormalizability
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ψ̄0(z)Γψ0(0) = Zψ(a)[ψ̄(z)Γψ(0)]R

7

FIG. 10. Comparison of CG ratios h̃(~z, ~p, a)/h̃(~zs, ~p, a) at
~p = 0 and a = 0.04 and 0.06 fm. The spatial separation ~z is
along the o↵-axis direction ~n = (1, 1, 1).

Appendix C: Multiplicative renormalization of

matrix elements in CG

It is well known that the GI quasi-PDF matrix ele-
ments can be multiplicatively renormalized, by removing
the linear divergence exp(��m(a)|z|) and logarithm di-
vergence Z(a) [53–55]. In the case of CG quasi-PDF
matrix elements, there is no linear divergence but only
the logarithm divergences [49–52]. To check the if the
CG matrix elements can be multiplicatively renormal-
ized by a constant Z(a), we compute the ~p = 0 matrix
elements on another gauge ensemble in 2+1 flavor QCD
generated by the HotQCD collaboration [36] with Highly
Improved Staggered Quarks [37], where the lattice spac-
ing a = 0.04 fm and volume L

3
s ⇥ Lt = 643 ⇥ 64 [26].

We use tadpole-improved clover Wilson valence fermions
on the HYP-smeared [38] gauge background, with a va-
lence pion massm⇡ = 300 MeV. The spatial separation is
along the o↵-axis direction ~n = (1, 1, 1), and we utilized
a total of 12 configurations, each consisting of 1 exact
and 16 sloppy inversions.

In Fig. 10, we show the comparison of CG matrix ele-
ments h̃(~z, ~p, a) divided by h̃(~zs, ~p, a) for the two lattices
with a = 0.04 and 0.06 fm. The zs are set to be same,
0.42 fm. As one can see, the renormalized matrix ele-
ments from the two lattices agree with each other very
well (except the two points around |~z| = 0 with the most
serious discretization e↵ect). This shows that the CG
matrix elements can be multiplicative renormalized by a
constant Z(a) as expected.

Appendix D: Matrix elements in coordinate space

Following Fig. 1, we compare the CG ratio at the o↵-
axis momentum |~p| = 2.24 GeV to the band which is
obtained by matching the PDF fitted from the GI ratios.
Like the |~p| = 2.15 GeV case, the lattice ratio at |~p| =
2.24 GeV agrees with the band within 1� error, which is
already implied by the rotational symmetry in Fig. 8.

Fig. 12 compares the hybrid-scheme CG and GI qPDF

FIG. 11. Comparison of CG and GI ratios with the inclusion
of the o↵-axis momentum |~p| = 2.24 GeV.

GI
CG
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FIG. 12. Hybrid scheme matrix element

matrix elements at P
z = 1.72 GeV, which again shows

more precise long-range correlations in the CG case.

Appendix E: Matching

Following Fig. 3, we compare the PDFs calculated from
the CG and GI qPDFs at P

z = 1.72 GeV at NLO in
Fig. 13. Again, despite the considerable di↵erences be-
tween the CG and GI qPDFs, the matched PDFs show

FIG. 13. PDFs from the qPDFs after NLO matching at P z =
1.72 GeV.

⇒ lim
a→0

h̃(z,0,a)
h̃(zs,0,a)

= finite

Comparison with a 
finer lattice with 

a = 0.04 fm

mπ = 300 MeV

L3
s × Lt = 644

Ncfg = 12

⃗z = (1,1,1)z

Nice continuum limit except for the discretization effects at z~a !

GI ⇔ Az = 0
CG: ∇ ⋅ A = 0

Wave function renormalization • D. Zwanziger, NPB 518 (1998);

• Baulieu and Zwanziger, NPB 548 (1999);

• A. Niegawa, PRD 74 (2006);

• Niegawa, Inui and Kohyama, PRD 74 (2006).
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Double ratio:

Consistency at short distance

20

ℳ(z, Pz, a) =
h̃(z, Pz, a)
h̃(z,0,a)

h̃(0,0,a)
h̃(0,Pz, a)

Parameterize PDF 
fv(x) ∼ xα(1 − x)β

Fit  from the GI 
matrix elements

α, β

Match fitted PDF to the 
CG matrix elements

3

|~p| (GeV) ~n ~k ts/a (#ex,#sl)
0 (0,0,0) (0,0,0) 8,10,12 (1, 16)

8 (1, 32)
1.72 (0,0,4) (0,0,3) 10 (3, 96)

12 (8, 256)
8 (2, 64)

2.15 (0,0,5) (0,0,3) 10 (4, 128)
12 (8, 256)
8 (1, 32)

2.24 (3,3,3) (2,2,2) 10 (2, 64)
12 (4, 128)

TABLE I. Details of lattice setup, where (#ex,#sl) are the
numbers of exact and sloppy inversions per configuration.

and volume L3
s⇥Lt = 483⇥64. We use tadpole-improved

clover Wilson valence fermions on the hypercubic (HYP)
smeared [38] gauge background, with a valence pion mass
m⇡ = 300 MeV. To improve the signal of boosted pions at
~p = (2⇡)/(Lsa)~n, we utilize the momentum-smeared [16]

pion source with optimized quark boost ~k [25, 26].
Since lattice simulations involve sampling from sta-

tistical ensembles to estimate expectation values, high-
momentum modes tend to have larger statistical fluctu-
ations due to their oscillatory nature. Using an o↵-axis
momentum ~n = (nx, ny, nz) one may achieve the same
|~n| with smaller nx,y,z and less statistics. In this study,
we employ 109 gauge configurations and perform multi-
ple exact and sloppy Dirac operator inversions on each of
them using the All Mode Averaging technique [39]. We
use ~n = (0, 0, 0), two on-axis ~n = (0, 0, nz) with nz = 4, 5
which correspond to |~p| = 1.72 and 2.15 GeV, and one o↵-
axis ~n = (3, 3, 3) which corresponds to |~p| = 2.24 GeV.
Three time separations ts/a = 8, 10, 12 are computed
to eliminate the excited-state contamination. Since the
quark propagators are the same, we calculate the GI
qPDF with 1-step HYP-smeared Wilson lines and the
CG qPDF during contraction at no additional cost. More
details of the statistics are shown in Table I.

For a 4D lattice of spatial volume V , we fix QCD in
the CG by finding the gauge transformation ⌦ of link
variables Ui(t, ~x) that minimizes the criterion [40, 41]

F [U⌦] =
1

9V

X

~x

X

i=1,2,3

⇥
� ReTr U⌦

i (t, ~x)
⇤
, (13)

at a precision of ⇠ 10�7 on each time slice t. When the
observable is not gauge invariant, the above precision and
the presence of Gribov copies [42, 43] will a↵ect the lat-
tice result. Despite some proposals for attacking the Gri-
bov problem [44–47], there are still no complete solution.
Nevertheless, lattice studies of SU(2) Yang-Mills theory
show that the Gribov copies only a↵ect the gluon prop-
agator in the far infrared region [48], which implies that
they have little impact on the short-range correlations
that dominate the PDF at moderate x.

Since QCD has been proved to be renormalizable in the
CG [49–51] without linear divergences [52], the renormal-

FIG. 1. CG and GI ratios. The bands are obtained by match-
ing the PDF fitted from GI ratios at nz = 4, 5 and z 2 [3a, 6a].

ization of CG correlators is reduced to quark wave func-
tion renormalization, which is multiplicative like the GI
case [53–55] except for being z-independent.
With the bare matrix elements, we first check the

consistency between CG and GI correlations at short
distance. With a simple paramterization of the PDF,
fv(x) / x

↵(1�x)� , we fit the ratio of GI correlations [34]

M(z, P z
, a) =

h̃
GI(z, P z

, a)

h̃GI(z, 0, a)

h̃
GI(0, 0, a)

h̃GI(0, P z, a)
, (14)

at z 2 [3a, 6a] and nz = 4, 5, with the NLO SDF formula.
Then, we match the fitted PDF to the CG correlations
using Eq. (10) and compare them to the lattice results
in Fig. 1. After matching, the fitted PDF can describe
the CG ratios within 1� error, implying that the PDFs
calculated from the CG and GI qPDFs must also be con-
sistent at moderate x. The slight deviations could come
from di↵erent O(z2⇤2

QCD) corrections that are ignored in
the SDF formulas or simply the statistical fluctuations.
Then we continue to the LaMET analysis. First, both

bare CG and GI correlations are renormalized in the hy-
brid scheme [20], where the ratio scheme in Eq. (14) is
used for z  zs with zs = 4a and 2

p
3a for on-axis and o↵-

axis momenta, repsectively. At z > zs, the linear diver-
gence in the GI correlation is subtracted with the method
in Ref. [56], and m0 is fitted with the leading-renormalon
resummation (LRR) approach in Refs. [21, 22], leaving
an overall renormalization to be fixed by a continuity
condition at z = zs [20]. Meanwhile, the renormalization
of CG correlations is simply accomplished with the con-
tinuity condition, which leads to nice continuum limit as
verified with a finer lattice in App. C. Fig. 2 compares
the hybrid-scheme CG and GI correlations. Both corre-
lations fall close to zero as z increases, but the errors in
the GI case are significantly larger due to the exponen-
tial enhancement by renormalization. In contrast, the
errors in the CG correlation remain small at large z. Al-
though at small z the CG correlation has slightly bigger

Agree within  !1σ

K. Orginos et al., PRD 96 (2017).



YONG ZHAO, 08/10/2023

Hybrid scheme renormalization with LRR
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FIG. 2. CG and GI correlations in the hybrid scheme at on-
axis momentum 2.15 GeV and o↵-axis momentum 2.24 GeV.

errors, they are likely improvable with better fixed CG
condition. Next, we Fourier transform the correlations
to obtain the qPDFs. The discrete data are interpolated
with a cubic polynomial, whose uncertainty is small com-
pared to the other sources. For the GI correlation, we
extrapolate to z = 1 with a physically motivated model
e
�m|z|

/�̃
d [56], which mainly a↵ects the small-x region.

On the other hand, this extrapolation has a much smaller
e↵ect on the CG qPDF since the central value and error
of the correlation are both small at large z.

Subsequently, we match the qPDFs to the PDF.
The NLO hybrid-scheme matching coe�cient for the GI
qPDF is calculated in Ref. [20], and in the CG case it is

C
(1)(⇠, zs, p

z
, µ) = C

(1)
ratio

�
⇠,

µ

pz

�
(15)

�


Si[(1� ⇠)zspz]

⇡(1� ⇠)
�

1

2|1� ⇠|

�(�1,1)

+(1)

,

where Si(�) =
R �
0 dt sin t/t. Fig. 3 compares the GI

qPDF with LRR to the CG qPDF before and after NLO
matching. Despite the noticeable di↵erence between the
qPDFs, the matched results converge well at x > 0.25,
validating the universality in LaMET [6, 24].

Finally, we conclude the analysis of CG qPDFs by in-
cluding the resummation of small-x logarithms through
the PDF evolution [57, 58], while the resummation of
large-x logarithms [57, 59] is postponed. Fig. 4 shows
the results at on-axis and o↵-axis momenta |~p| = 2.15
and 2.24 GeV, respectively, which are compared to the
recent global fits by xFitter20 [60] and JAM21NLO [61].
The error includes scale variation, which is estimated by
setting µ = 2x|~p| with  =

p
2, 1, 1/

p
2 in the match-

ing and evolving the results to µ = 2 GeV at leading-
logarithmic (LL) order. The resummation has a huge im-
pact at x . 0.2 where the parton momentum approaches
the infrared region. For x > 0.2, the lattice results agree
with the global fits, although they have larger errors.
Since the statistics we use is significantly less than that
in Ref. [56] for a similar calculation, there is still much
room for improvement. More details on the lattice simu-

FIG. 3. PDFs from the qPDFs after NLO matching.

FIG. 4. PDFs from CG qPDFs at LL+NLO accuracy, com-
pared to the xFitter20 [60] and JAM21NLO [61] fits.

lation, test of rotational symmetry, renormalization and
matching are provided in the Appendix.
In summary, we have proposed a new method to cal-

culate the PDF from CG correlations within the frame-
work of LaMET. The factorization relation between the
CG qPDF and PDF has been verified at NLO. With
an exploratory lattice calculation, we demonstrate the
equivalence of this method to the GI qPDF and its ad-
vantages in achieving larger o↵-axis momenta, simpler
renormalization and more precise long-range correlations
at a lower computational cost.
The nice agreement between CG and GI qPDF meth-

ods implies a small e↵ect of the Gribov copies, yet further
systematic study is still worthwhile. To improve the pre-
cision, we can increase the statistics and pursue higher
o↵-axis momenta. One practical issue is the large step
size along an o↵-axis direction, such as

p
3a, which adds

to the interpolation error. Nevertheless, using the idea of
complementarity [62] we can largely overcome it by re-
constructing smooth short-range correlations through the
SDF of matrix elements at on-axis momenta. Besides,
the evolution and resummations are similar to those for
the GI qPDFs, which will be developed in the future for
precision calculations.

• Both CG matrix elements and their errors remain small at large |z|, which 
leads to better controlled Fourier transform; 

• Off-axis and on-axis momenta matrix elements are at similar precision, 
despite half the statistics for the former.

|z | ≤ zs ,
h(z, Pz, a)
h(z,0,a)

|z | > zs , e(δm(a)+m̄0)|z| h(z, Pz, a)
h(zs,0,a)

X. Ji, YZ, et al., NPB 964 (2021).
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Comparison of the GI and CG quasi-PDF methods:

Perturbative matching

22
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FIG. 10. Comparison of CG ratios h̃(~z, ~p, a)/h̃(~zs, ~p, a) at
~p = 0 and a = 0.04 and 0.06 fm. The spatial separation ~z is
along the o↵-axis direction ~n = (1, 1, 1).

Appendix C: Multiplicative renormalization of

matrix elements in CG

It is well known that the GI quasi-PDF matrix ele-
ments can be multiplicatively renormalized, by removing
the linear divergence exp(��m(a)|z|) and logarithm di-
vergence Z(a) [53–55]. In the case of CG quasi-PDF
matrix elements, there is no linear divergence but only
the logarithm divergences [49–52]. To check the if the
CG matrix elements can be multiplicatively renormal-
ized by a constant Z(a), we compute the ~p = 0 matrix
elements on another gauge ensemble in 2+1 flavor QCD
generated by the HotQCD collaboration [36] with Highly
Improved Staggered Quarks [37], where the lattice spac-
ing a = 0.04 fm and volume L

3
s ⇥ Lt = 643 ⇥ 64 [26].

We use tadpole-improved clover Wilson valence fermions
on the HYP-smeared [38] gauge background, with a va-
lence pion massm⇡ = 300 MeV. The spatial separation is
along the o↵-axis direction ~n = (1, 1, 1), and we utilized
a total of 12 configurations, each consisting of 1 exact
and 16 sloppy inversions.

In Fig. 10, we show the comparison of CG matrix ele-
ments h̃(~z, ~p, a) divided by h̃(~zs, ~p, a) for the two lattices
with a = 0.04 and 0.06 fm. The zs are set to be same,
0.42 fm. As one can see, the renormalized matrix ele-
ments from the two lattices agree with each other very
well (except the two points around |~z| = 0 with the most
serious discretization e↵ect). This shows that the CG
matrix elements can be multiplicative renormalized by a
constant Z(a) as expected.

Appendix D: Matrix elements in coordinate space

Following Fig. 1, we compare the CG ratio at the o↵-
axis momentum |~p| = 2.24 GeV to the band which is
obtained by matching the PDF fitted from the GI ratios.
Like the |~p| = 2.15 GeV case, the lattice ratio at |~p| =
2.24 GeV agrees with the band within 1� error, which is
already implied by the rotational symmetry in Fig. 8.

Fig. 12 compares the hybrid-scheme CG and GI qPDF

FIG. 11. Comparison of CG and GI ratios with the inclusion
of the o↵-axis momentum |~p| = 2.24 GeV.
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FIG. 12. Hybrid scheme matrix element

matrix elements at P
z = 1.72 GeV, which again shows

more precise long-range correlations in the CG case.

Appendix E: Matching

Following Fig. 3, we compare the PDFs calculated from
the CG and GI qPDFs at P

z = 1.72 GeV at NLO in
Fig. 13. Again, despite the considerable di↵erences be-
tween the CG and GI qPDFs, the matched PDFs show

FIG. 13. PDFs from the qPDFs after NLO matching at P z =
1.72 GeV.

4

FIG. 2. CG and GI correlations in the hybrid scheme at on-
axis momentum 2.15 GeV and o↵-axis momentum 2.24 GeV.

errors, they are likely improvable with better fixed CG
condition. Next, we Fourier transform the correlations
to obtain the qPDFs. The discrete data are interpolated
with a cubic polynomial, whose uncertainty is small com-
pared to the other sources. For the GI correlation, we
extrapolate to z = 1 with a physically motivated model
e
�m|z|

/�̃
d [56], which mainly a↵ects the small-x region.

On the other hand, this extrapolation has a much smaller
e↵ect on the CG qPDF since the central value and error
of the correlation are both small at large z.

Subsequently, we match the qPDFs to the PDF.
The NLO hybrid-scheme matching coe�cient for the GI
qPDF is calculated in Ref. [20], and in the CG case it is

C
(1)(⇠, zs, p

z
, µ) = C

(1)
ratio

�
⇠,

µ

pz

�
(15)

�


Si[(1� ⇠)zspz]

⇡(1� ⇠)
�

1

2|1� ⇠|

�(�1,1)

+(1)

,

where Si(�) =
R �
0 dt sin t/t. Fig. 3 compares the GI

qPDF with LRR to the CG qPDF before and after NLO
matching. Despite the noticeable di↵erence between the
qPDFs, the matched results converge well at x > 0.25,
validating the universality in LaMET [6, 24].

Finally, we conclude the analysis of CG qPDFs by in-
cluding the resummation of small-x logarithms through
the PDF evolution [57, 58], while the resummation of
large-x logarithms [57, 59] is postponed. Fig. 4 shows
the results at on-axis and o↵-axis momenta |~p| = 2.15
and 2.24 GeV, respectively, which are compared to the
recent global fits by xFitter20 [60] and JAM21NLO [61].
The error includes scale variation, which is estimated by
setting µ = 2x|~p| with  =

p
2, 1, 1/

p
2 in the match-

ing and evolving the results to µ = 2 GeV at leading-
logarithmic (LL) order. The resummation has a huge im-
pact at x . 0.2 where the parton momentum approaches
the infrared region. For x > 0.2, the lattice results agree
with the global fits, although they have larger errors.
Since the statistics we use is significantly less than that
in Ref. [56] for a similar calculation, there is still much
room for improvement. More details on the lattice simu-

FIG. 3. PDFs from the qPDFs after NLO matching.

FIG. 4. PDFs from CG qPDFs at LL+NLO accuracy, com-
pared to the xFitter20 [60] and JAM21NLO [61] fits.

lation, test of rotational symmetry, renormalization and
matching are provided in the Appendix.
In summary, we have proposed a new method to cal-

culate the PDF from CG correlations within the frame-
work of LaMET. The factorization relation between the
CG qPDF and PDF has been verified at NLO. With
an exploratory lattice calculation, we demonstrate the
equivalence of this method to the GI qPDF and its ad-
vantages in achieving larger o↵-axis momenta, simpler
renormalization and more precise long-range correlations
at a lower computational cost.
The nice agreement between CG and GI qPDF meth-

ods implies a small e↵ect of the Gribov copies, yet further
systematic study is still worthwhile. To improve the pre-
cision, we can increase the statistics and pursue higher
o↵-axis momenta. One practical issue is the large step
size along an o↵-axis direction, such as

p
3a, which adds

to the interpolation error. Nevertheless, using the idea of
complementarity [62] we can largely overcome it by re-
constructing smooth short-range correlations through the
SDF of matrix elements at on-axis momenta. Besides,
the evolution and resummations are similar to those for
the GI qPDFs, which will be developed in the future for
precision calculations.

While the quasi-PDFs are different by at least , the matched results are 
consistent for , demonstrating the universality in LaMET !

1σ
x ≳ 0.2
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NLO V.S. Leading-logarithmic (LL) small-x resummation
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Inverse matching 
at μ = κ ⋅ 2xPz

DGLAP evolution from 
 to  GeVκ ⋅ 2xPz μ = 2

Vary  to 
estimate scale uncertainty

κ ∈ [1/ 2, 2]
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FIG. 14. PDFs matched from the CG qPDF at NLO and
LL+NLO.

FIG. 15. PDFs from CG qPDFs at P z = 1.72 GeV, compared
to the global fits.

significantly improved agreement at moderate x.
To demonstrate the e↵ect of resumming small-x loga-

rithm or PDF evolution, we compare the PDFs matched
from the CG qPDF at NLO and LL+NLO accuracies in
Fig. 14. For LL resummation, we use one-loop evolution
of ↵s, which starts at initial value ↵s(µ = 2GeV) = 0.293.
The resummation makes almost no di↵erence to the PDF
at x > 0.4, but becomes more and more significant as x
decreases. Eventually, at 2xP z

⇠ 0.8 GeV where ↵s be-
comes of O(1), the scale variation uncertainty becomes
out of control.
Finally, for completeness we include a comparison of

the PDF calculated from the CG qPDF at P
z = 1.72

GeV to the global fits. Again we find agreement be-
tween lattice and phenomenology at moderate to large
x, which is slightly better than the two larger momenta
cases. Since the errors in the current lattice results are
huge, the unquantified power corrections, which should
be better suppressed at higher momenta, may just be a
less important systematic uncertainty here.

8

FIG. 14. PDFs matched from the CG qPDF at NLO and
LL+NLO.

FIG. 15. PDFs from CG qPDFs at P z = 1.72 GeV, compared
to the global fits.

significantly improved agreement at moderate x.
To demonstrate the e↵ect of resumming small-x loga-

rithm or PDF evolution, we compare the PDFs matched
from the CG qPDF at NLO and LL+NLO accuracies in
Fig. 14. For LL resummation, we use one-loop evolution
of ↵s, which starts at initial value ↵s(µ = 2GeV) = 0.293.
The resummation makes almost no di↵erence to the PDF
at x > 0.4, but becomes more and more significant as x
decreases. Eventually, at 2xP z

⇠ 0.8 GeV where ↵s be-
comes of O(1), the scale variation uncertainty becomes
out of control.
Finally, for completeness we include a comparison of

the PDF calculated from the CG qPDF at P
z = 1.72

GeV to the global fits. Again we find agreement be-
tween lattice and phenomenology at moderate to large
x, which is slightly better than the two larger momenta
cases. Since the errors in the current lattice results are
huge, the unquantified power corrections, which should
be better suppressed at higher momenta, may just be a
less important systematic uncertainty here.

Small-x resummation makes almost no difference for , but becomes 
important at smaller  and is out of control at  GeV where .

x ≳ 0.4
x 2xPz ∼ 0.8 αs ∼ 1
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Comparison with global fits

Final result
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FIG. 2. CG and GI correlations in the hybrid scheme at on-
axis momentum 2.15 GeV and o↵-axis momentum 2.24 GeV.

errors, they are likely improvable with better fixed CG
condition. Next, we Fourier transform the correlations
to obtain the qPDFs. The discrete data are interpolated
with a cubic polynomial, whose uncertainty is small com-
pared to the other sources. For the GI correlation, we
extrapolate to z = 1 with a physically motivated model
e
�m|z|

/�̃
d [56], which mainly a↵ects the small-x region.

On the other hand, this extrapolation has a much smaller
e↵ect on the CG qPDF since the central value and error
of the correlation are both small at large z.

Subsequently, we match the qPDFs to the PDF.
The NLO hybrid-scheme matching coe�cient for the GI
qPDF is calculated in Ref. [20], and in the CG case it is

C
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where Si(�) =
R �
0 dt sin t/t. Fig. 3 compares the GI

qPDF with LRR to the CG qPDF before and after NLO
matching. Despite the noticeable di↵erence between the
qPDFs, the matched results converge well at x > 0.25,
validating the universality in LaMET [6, 24].

Finally, we conclude the analysis of CG qPDFs by in-
cluding the resummation of small-x logarithms through
the PDF evolution [57, 58], while the resummation of
large-x logarithms [57, 59] is postponed. Fig. 4 shows
the results at on-axis and o↵-axis momenta |~p| = 2.15
and 2.24 GeV, respectively, which are compared to the
recent global fits by xFitter20 [60] and JAM21NLO [61].
The error includes scale variation, which is estimated by
setting µ = 2x|~p| with  =

p
2, 1, 1/

p
2 in the match-

ing and evolving the results to µ = 2 GeV at leading-
logarithmic (LL) order. The resummation has a huge im-
pact at x . 0.2 where the parton momentum approaches
the infrared region. For x > 0.2, the lattice results agree
with the global fits, although they have larger errors.
Since the statistics we use is significantly less than that
in Ref. [56] for a similar calculation, there is still much
room for improvement. More details on the lattice simu-

FIG. 3. PDFs from the qPDFs after NLO matching.

FIG. 4. PDFs from CG qPDFs at LL+NLO accuracy, com-
pared to the xFitter20 [60] and JAM21NLO [61] fits.

lation, test of rotational symmetry, renormalization and
matching are provided in the Appendix.
In summary, we have proposed a new method to cal-

culate the PDF from CG correlations within the frame-
work of LaMET. The factorization relation between the
CG qPDF and PDF has been verified at NLO. With
an exploratory lattice calculation, we demonstrate the
equivalence of this method to the GI qPDF and its ad-
vantages in achieving larger o↵-axis momenta, simpler
renormalization and more precise long-range correlations
at a lower computational cost.
The nice agreement between CG and GI qPDF meth-

ods implies a small e↵ect of the Gribov copies, yet further
systematic study is still worthwhile. To improve the pre-
cision, we can increase the statistics and pursue higher
o↵-axis momenta. One practical issue is the large step
size along an o↵-axis direction, such as

p
3a, which adds

to the interpolation error. Nevertheless, using the idea of
complementarity [62] we can largely overcome it by re-
constructing smooth short-range correlations through the
SDF of matrix elements at on-axis momenta. Besides,
the evolution and resummations are similar to those for
the GI qPDFs, which will be developed in the future for
precision calculations.

• Agreement with global fits for  within the (large) error; 

• Precision can be considerably improved with larger statistics.
x ≳ 0.2

Global fits at NLO 
• JAM21NLO, PRL 127 (2021);

• xFitter (2020), PRD 102 (2020).
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Comparison between GI and CG quasi-PDFs
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Momentum 
direction Renormalization Gribov 

copies
Power 

corrections Mixing Higher-order 
corrections

Gauge-
invariant (GI)

Linear divergence 
+ vertex and 

wave function 
renormalization

N/A w. renormalon 
subtraction

Lorentz 
symmetry

Available at 
NNLO now

Coulomb 
gauge (CG)

Wave function 
renormalization

Affecting IR 
(long range) 

region

3D 
rotational 
symmetry

May be hard 
to go beyond 

NLO
(nx, ny, nz)

(0,0,nz)

(nx,0,0)
(0,ny,0)

Λ2
QCD/P2

z

Λ2
QCD/ ⃗p2
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• We verify the factorization of CG quasi-PDF to the PDF at NLO;


• We demonstrate the universality in LaMET through the 
equivalence of CG and GI quasi-PDF methods;


• The CG correlations have the advantages of access to larger 
off-axis momenta (at a lower computational cost), absence of 
linear divergence, and enhanced long-range precision;


• It is almost free to compute the GI and CG matrix elements at 
the same time.

Summary

26
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• Open questions: 
• Effects of Gribov copies seem negligible, but should be further studied;


• Threshold resummation is necessary and similar to the GI quasi-PDF;


• OPE and mixings complicated by breaking of Lorentz symmetry.


• Broader applications: 

• GPDs. Straightforward extension from the PDF.


• TMDs. Staple-shaped Wilson lines with infinite extension.

• Absence of Wilson line provides much convenience in computation and 

renormalization;

• Factorization should be provable as boosted quarks in a physical gauge 

capture the right collinear degrees of freedom.

Outlook

27
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Bare matrix elements

28

5

Finally, the CG correlations can also be used to cal-
culate broader parton physics such as generalized par-
ton distributions and transverse-momentum distribu-
tions (TMDs), which are more computationally demand-
ing than the PDFs. In particular, the TMD calcula-
tions will benefit significantly from the absence of staple-
shaped Wilson lines—whose storage and contractions
consume much memory and time—and simplified renor-
malization [63–69]. Since the boosted quarks in a physi-
cal gauge capture the correct collinear partonic degrees of
freedom, their 3D correlation should be matchable to the
physical TMD [70–74], which will be studied in a future
work.
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Appendix A: Two-point and three-point functions

To determine the bare matrix elements of pion ground
state, we first need the two-point functions C2pt(ts; ~p)
which will provide energy spectrum created by the pion
source and corresponding overlap amplitudes [25]. We
utilize the Guassian momentum smeared sources to im-
prove the signal of boosted pion at momentum ~p =
(2⇡)/(Lsa)~n. We use ~n = (0, 0, 0), two on-axis ~n =
(0, 0, nz) with nz = 4, 5 which correspond to |~p| = 1.72
and 2.15 GeV, and one o↵-axis ~n = (3, 3, 3) which corre-
sponds to |~p| = 2.24 GeV. The optimized quark boost pa-
rameters and statistics are shown in Table I. In Fig. 5, we
show the e↵ective mass evaluated from two-point func-
tions as a function of time separation ts. At ts & 10a

FIG. 5. The e↵ective mass evaluated from two-point functions
as a function of ts are shown. The short colored lines on
the right side are estimated from the disperion relation E =p

~p2 +m2
⇡ with m⇡ = 300 MeV.

FIG. 6. The black arrows are the zig-zag Wilson lines for GI
matrix elements with o↵-axis momentum.

the e↵ective mass, dominated by the pion ground state,
agree with the short colored lines on the right side esti-
mated from the dispersion relation E =

p
~p2 +m2

⇡ with
m⇡ = 300 MeV. What’s more, the signal of |~p| = 2.24
GeV case is compatible to the 2.15 GeV case though the
former only takes half of the statistics. This suggests
that the o↵-axis ~n can achieve the same momentum with
less computational cost compared to the on-axis ones.

To extract the the quasi-PDF matrix elements, we need
to compute the three point functions C3pt(⌧, ts; ~p). For
the case of CG qPDF, we directly do the contraction of
the quark propagators without Wilson line, using space
separation ~z along the direction ~n. As for the case of GI
qPDF, we use straight Wilson lines ~z = (0, 0, z3) for on-
axis momentum and zig-zag Wilson lines for the o↵-axis
momentum, as shown in Fig. 6. As a result, the distance
of a o↵-axis separation ~z = {b, b, b} is |~z| =

p
3b, while

the total length of the Wilson line is l = 3b. We construct

6

FIG. 7. The C3pt/C2pt ratios R(⌧ ; ~z, ~p, ts) at ~z = ~0 of |~p| =
2.15 and 2.24 GeV.

the ratios R(⌧, ~z, ~p, ts) = C3pt(⌧, ts; ~p)/C2pt(ts; ~p) to take
the advantage of the correlation between two-point and
three-point functions. In the ts, ⌧ ! 1 limit, the ratio
gives the ground-state matrix elements. In this work, we
have calculated three time separation ts and done a two-
state fit [25] for the ground state extrapolation. In Fig. 7,
we show ratios (data points) at ~z = ~0 of the two large
momenta and the fitted results (colored bands). The
black boxes are the ground state matrix elements, where
good agreement and similar precision can be observed,
though the |~p| = 2.24 GeV case only used half of the
statistics for |~p| = 2.15 GeV. This is probably due to the
smaller momentum modes along each axis.

Appendix B: Bare matrix elements and rotational

symmetry

In Fig. 8, we show the bare CG qPDF matrix elements
as a function of |~z|. It can be seen that the matrix ele-
ments from on-axis and o↵-axis cases overlap with each
other, especially at zero momentum with high precision,
which implies that the rotational symmetry is well pre-
served. The bare matrix elements of GI case are shown
in the upper panel of Fig. 9. Though the di↵erence of the
large-momentum matrix elements is not obvious due to
the large errors, there is noticeable deviation for the pre-
cise zero-momentum matrix elements. It is evident that
zig-zag Wilson line cannot accurately approximate the
straight Wilson line. We note that the length of the zig-
zag Wilson line is l =

p
3|~z|. Therefore, in the lower panel

FIG. 8. The bare matrix elements of CG qPDF.

FIG. 9. The bare (upper panel) and dm subtracted matrix
elements (lower panel) of GI qPDF.

of Fig. 9 we show the matrix elements after subtracting
the linear divergence e

�dm·l, where dm can be derived
from the heavy quark potential (dm · a = 0.1586) [56].

As one can see, (edm·|~z|)
p
3 badly overshoots the linear

divergence of matrix elements at o↵-axis ~z, which makes
their deviation from the on-axis ~z matrix elements even
bigger. The reason could be that the HYP smearing dis-
torted the UV physics within a hypercube and the zig-
zag Wilson lines contains so many short links. However,
smearing is essential to improving the signal of GI qPDF
matrix elements, so this obstacle cannot be bypassed. In
summary, to use o↵-axis momenta with reasonable sig-
nal and rotational symmetry, the CG qPDF is the better
choice.

Effective mass 3pt/2pt ratio

CG

CG


