Parton Distributions from Boosted Fields in the Coulomb Gauge

Towards Improved Hadron Femtography with Hard Exclusive Reactions Jefferson Lab, Newport News, USA Aug 7-11, 2023 YONG ZHAO AUG 10, 2023

Xiang Gao, Wei-Yang Liu and Yong Zhao, arXiv: 2306.14960.

Outline

Methodology

- Large-Momentum Effective Theory
- Universality class and quasi-PDF in the Coulomb gauge
- Factorization

Lattice calculation

- Bare matrix elements at on- and off-axis momenta
- Renormalization and matching
- Comparison of final results
- Outlook

3D Imaging of the Nucleon

COMPASS, CERN

The Electron-Ion Collider, BNL

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER EIC Yellow Report

 $t = 0, \ z \neq 0$

PDF f(x): Cannot be calculated on the lattice

$$f(x) = \int \frac{dz^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(z^{-}) \\ \times \frac{\gamma^{+}}{2} W[z^{-}, 0] \psi(0) | P \rangle$$

• X. Ji, PRL 110 (2013); SCPMA 57 (2014);

 X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021). Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

$$\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{iz(xP^{z})} \langle P | \bar{\psi}(z) \\ \times \frac{\gamma^{z}}{2} W[z, 0] \psi(0) | P \rangle$$

Systematic calculation of x-dependence for $x \in [x_{\min}, x_{\max}]$:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C^{-1}\left(\frac{x}{y}, \frac{\mu}{yP^{z}}, \frac{\tilde{\mu}}{\mu}\right) \tilde{f}(y, P^{z}, \tilde{\mu}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

Renormalization

Perturbative Matching

Systematic calculation of x-dependence for $x \in [x_{\min}, x_{\max}]$:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C^{-1}\left(\frac{x}{y}, \frac{\mu}{yP^{z}}, \frac{\tilde{\mu}}{\mu}\right) \tilde{f}(y, P^{z}, \tilde{\mu}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

Renormalization

$$\begin{split} O_B^{\Gamma}(z,a) &= \bar{\psi}_0(z) \Gamma W_0[z,0] \psi_0(0) \\ &= e^{-\delta m(a)|z|} \ Z_O(a) O_R^{\Gamma}(z) \end{split}$$

Linear divergence in the Wilson line:

Subtraction of linear divergence

 $\delta m(a) = \frac{m_{-1}}{a} + \mathcal{O}(\Lambda_{\text{QCD}})$ Renormalon ambiguity

- Self renormalization
- Static potential

Y. Huo, et al. (LPC), NPB 969 (2021).

X. Gao, YZ, et al., PRL 128 (2022).

Subtraction of leading renormalon ambiguity

Matching to the OPE of *P*^z=0 matrix element:

$$C_0^{\overline{\mathrm{MS}}}(\mu, z) = C_0^{\mathrm{LRR}}(\mu, z) e^{-m_0^{\overline{\mathrm{MS}}}|z|}$$

Leading-renormalon resummation (LRR)

- Holligan, Ji, Lin, Su and Zhang, NPB 993 (2023);
- Zhang, Ji, Holligan and Su (ZJHS23), PLB 844 (2023).

Systematic calculation of x-dependence for $x \in [x_{\min}, x_{\max}]$:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C^{-1}\left(\frac{x}{y}, \frac{\mu}{yP^{z}}, \frac{\tilde{\mu}}{\mu}\right) \tilde{f}(y, P^{z}, \tilde{\mu}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

- Next-to-next-to-leading order (NNLO) kernel
- Chen, Zhu and Wang, PRL 126 (2021);
 Li, Ma and Qiu, PRL 126 (2021).

(DGLAP evolution)

 $\frac{\alpha_s \ln(1 - x/y)}{(1 - x/y)}$

- . Resummation of small-x logarithms $\alpha_{c} \ln$
 - X. Gao, K. Lee, and YZ et al., PRD 103 (2021);
 - Y. Su, J. Holligan et al., NPB 991 (2023).

• Subtraction of leading renormalon $C(x/y) \rightarrow C^{\text{LRR}}(x/y)$

- Holligan, Ji, Lin, Su and Zhang, NPB 993 (2023);
- Zhang, Ji, Holligan and Su (ZJHS23), PLB 844 (2023).

Resummation of large-x (threshold) logarithms

- X. Gao, K. Lee, and YZ et al., PRD 103 (2021);
- X. Ji, Y. Liu and Y. Su, arXiv:2305.04416.

Short-distance factorization in coordinate space

$$\begin{split} \tilde{h}(\lambda = zP^{z}, z^{2}\mu^{2}) &= \sum_{n=0}^{\infty} C_{n}(z^{2}\mu^{2}) \frac{(-i\lambda)^{n}}{n!} a_{n}(\mu) + \mathcal{O}(z^{2}\Lambda_{\text{QCD}}^{2}), \\ &= \int_{0}^{1} d\alpha \ \mathscr{C}(\alpha, z^{2}\mu^{2}) \ h(\alpha\lambda, \mu) + \mathcal{O}(z^{2}\Lambda_{\text{QCD}}^{2}), \end{split} f(x,\mu) = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-ix\lambda} \ h(\lambda,\mu) \end{split}$$

- Extraction of the lowest moments;
- Calculation of the light-cone correlation up to $\lambda_{max} = z_{max}P^{z}$;
- Fitting the *x*-dependence with model assumption of the PDF.

Towards systematic control:

- Chen, Zhu and Wang, PRL 126 (2021);
- 1) Higher-order matching (NNLO); Li, Ma and Qiu, PRL 126 (2021).
- 2) Resummation of $\alpha_s \ln(z^2 \mu^2)$;

- X. Gao, K. Lee, and **YZ** et al., PRD **103** (2021);
- X. Ji, Y. Liu and Y. Su, arXiv:2305.04416.
- 3) Threshold resummation of $\alpha_s^i \ln^j n$ or $\alpha_s \ln(1 \alpha)/(1 \alpha)$

• A. Radyushkin, PRD 96 (2017);

- K. Orginos et al., PRD 96 (2017);
- T. Izubuchi, **YZ**, et al., PRD **98** (2018).

State-of-the-art calculation of pion PDF

	Subtraction of δm	Leading-renormalon resummation (LRR)	NNLO	Small- <i>x</i> resummation	Threshold resumation	Subleading renormalon	Discretizati on effects
BNL- ANL21	~		~				
ZJHS23	 ✓ 	✓	 ✓ 	 ✓ 			

Universality in LaMET

Quasi-PDF in the Coulomb gauge

$$\tilde{h}(\vec{z},\vec{p},\mu) = \frac{1}{2p^t} \langle p | \bar{\psi}(\vec{z}) \gamma^t \psi(0) \Big|_{\nabla \cdot \mathbf{A} = 0} | p \rangle, \quad \vec{z} // \vec{p}$$

$$\tilde{f}(x, |\vec{p}|, \mu) = |\vec{p}| \int_{-\infty}^{\infty} \frac{d|\vec{z}|}{2\pi} e^{ix\vec{p}\cdot\vec{z}} \tilde{h}(\vec{z}, \vec{p}, \mu)$$

Static charge

First proposed in the lattice calculation of gluon helicity

$$\Delta G = \langle P_{\infty} | (\mathbf{E} \times \mathbf{A})^{3} |_{\nabla \cdot \mathbf{A} = 0} | P_{\infty} \rangle$$

- X. Ji, J.-H. Zhang and YZ, PRL 111 (2013);
- Y. Hatta, X. Ji, and YZ, PRD 89 (2014);
- X. Ji, J.-H. Zhang and YZ, PLB 743 (2015);
- Y.-B. Yang, R. Sufian, YZ, et al. PRL 118 (2017).

Factorization

- Large-momentum factorization:
- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
 - Y. Ma and J. Qiu, PRD 98 (2018);
 - T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD 98 (2018)

$$\tilde{f}(x, P^z, \mu) = \int \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{|y|P^z}\right) f(y, \mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{(1-x)^2 P_z^2}\right)$$

Factorization

Short-distance factorization:

A. Radyushkin, PRD 96 (2017).

$$\tilde{h}(z, P^{z}, \mu) = \int du \ \mathcal{C}(u, z^{2}\mu^{2})h(u\tilde{\lambda}, \mu) + \mathcal{O}(z^{2}\Lambda_{\rm QCD}^{2})$$

$$\mathcal{C}\left(u,\frac{\mu}{p^{z}}\right) = \delta(u-1) + \frac{\alpha_{s}C_{F}}{2\pi}\mathcal{C}^{(1)}\left(u,\frac{\mu}{p^{z}}\right) + \mathcal{O}(\alpha_{s}^{2})$$

$$\mathscr{C}^{(1)}(u, z^2 \mu^2) = \mathscr{C}^{(1)}_{\text{ratio}}(u, z^2 \mu^2) + \frac{1}{2}\delta(1-u)\left(1 - \ln\frac{z^2 \mu^2 e^{2\gamma_E}}{4}\right)$$

$$\mathscr{C}_{\text{ratio}}^{(1)}(u, z^2 \mu^2) = \left[-P_{qq}(u) \ln \frac{z^2 \mu^2 e^{2\gamma_E}}{4} - \frac{4\ln(1-u)}{1-u} + 1 - u \right]_{+(1)}^{[0,1]}$$

$$+\left[\frac{3u-1}{u-1}\frac{\tan^{-1}\left(\frac{\sqrt{1-2u}}{|u|}\right)}{\sqrt{1-2u}}-\frac{3}{|1-u|}\right]_{+(1)}^{(-\infty,\infty)}\xrightarrow{u\to\infty}\frac{1}{u^2}$$

Lattice setup

Wilson-clover valence fermion on 2+1 flavor HISQ gauge configurations (HotQCD).

$ \vec{p} $ (GeV)	\vec{n}	\vec{k}	t_s/a	(#ex,#sl)
0	$(0,\!0,\!0)$	$(0,\!0,\!0)$	8,10,12	(1, 16)
			8	(1, 32)
1.72	$(0,\!0,\!4)$	(0,0,3)	10	(3, 96)
			12	(8, 256)
			8	(2, 64)
2.15	$(0,\!0,\!5)$	(0,0,3)	10	(4, 128)
			12	(8, 256)
			8	(1, 32)
2.24	(3,3,3)	(2,2,2)	10	(2, 64)
			12	(4, 128)

a = 0.06 fm $m_{\pi} = 300 \text{ MeV}$ $L_s^3 \times L_t = 48^3 \times 64$ $N_{\text{cfg}} = 109$

• T. Izubuchi, L. Jin et al., PRD 100 (2019);

• X. Gao, N. Karthik, **YZ** et al., PRD **102** (2020).

#ex and #sl: numbers of exact and sloppy inversions per configuration For n_z =(3,3,3): half the statistics for n_z =(0,0,5)

Coulomb gauge fixing

• Find the gauge transformation Ω of link variables $U_i(t, \vec{x})$ that minimizes:

$$F[U^{\Omega}] = \frac{1}{9V} \sum_{\vec{x}} \sum_{i=1,2,3} \left[-\text{re Tr } U_i^{\Omega}(t,\vec{x}) \right] \quad \text{Precision} \sim 10^{-7}$$

- Gauge-variant correlations may differ in different Gribov copies.
- In SU(2) Yang-Mills theory, different Gribov copies only affects the gluon propagator at far infrared region $|q| \leq 0.2$ GeV, though the ghost propagator are more sensitive to them.

A. Mass, Annals. Phys. 387 (2017).

• O: Gribov copies should only affect large |z| correlations in physical states, or PDF at small *x* where LaMET does not work.

Bare matrix elements

1-step hypercubic smeared Wilson line

No Wilson line

Same quark propagators, free to calculate both!

CG matrix elements precisely preserve the 3D rotational symmetry, **I** which is broken for GI matrix elements with a zig-zagged Wilson line

VANA 704A A0/10/0000

1 00

Renormalizability

Nice continuum limit except for the discretization effects at *z~a* !

Consistency at short distance

Double ratio:

$$\mathcal{M}(z, P^z, a) = \frac{\tilde{h}(z, P^z, a)}{\tilde{h}(z, 0, a)} \frac{\tilde{h}(0, 0, a)}{\tilde{h}(0, P^z, a)}$$

K. Orginos et al., PRD 96 (2017).

Hybrid scheme renormalization with LRR

- Both CG matrix elements and their errors remain small at large |z|, which leads to better controlled Fourier transform;
- Off-axis and on-axis momenta matrix elements are at similar precision, despite half the statistics for the former.

Perturbative matching

Comparison of the GI and CG quasi-PDF methods:

While the quasi-PDFs are different by at least 1σ , the matched results are consistent for $x \ge 0.2$, demonstrating the universality in LaMET !

NLO V.S. Leading-logarithmic (LL) small-x resummation

Small-*x* resummation makes almost no difference for $x \ge 0.4$, but becomes important at smaller *x* and is out of control at $2xP^z \sim 0.8$ GeV where $\alpha_s \sim 1$.

Comparison with global fits

- Agreement with global fits for $x \gtrsim 0.2$ within the (large) error;
- Precision can be considerably improved with larger statistics.

Comparison between GI and CG quasi-PDFs

	Momentum direction	Renormalization	Gribov copies	Power corrections	Mixing	Higher-order corrections
Gauge- invariant (GI)	$(0,0,n_z)$ $(n_x,0,0)$ $(0,n_y,0)$	Linear divergence + vertex and wave function renormalization	N/A	$\Lambda^2_{\rm QCD}/P_z^2$ w. renormalon subtraction	Lorentz symmetry	Available at NNLO now
Coulomb gauge (CG)	(n_x, n_y, n_z)	Wave function renormalization	Affecting IR (long range) region	$\Lambda^2_{\rm QCD}/\vec{p}^2$	3D rotational symmetry	May be hard to go beyond NLO ỹ

Summary

- We verify the factorization of CG quasi-PDF to the PDF at NLO;
- We demonstrate the universality in LaMET through the equivalence of CG and GI quasi-PDF methods;
- The CG correlations have the advantages of access to larger off-axis momenta (at a lower computational cost), absence of linear divergence, and enhanced long-range precision;
- It is almost free to compute the GI and CG matrix elements at the same time.

Outlook

Open questions:

- Effects of Gribov copies seem negligible, but should be further studied;
- Threshold resummation is necessary and similar to the GI quasi-PDF;
- OPE and mixings complicated by breaking of Lorentz symmetry.
- Broader applications:
 - GPDs. Straightforward extension from the PDF.
 - TMDs. Staple-shaped Wilson lines with infinite extension.
 - Absence of Wilson line provides much convenience in computation and renormalization;
 - Factorization should be provable as boosted quarks in a physical gauge capture the right collinear degrees of freedom.

Bare matrix elements

Effective mass

3pt/2pt ratio

