Backward (u-Channel) **DVCS**

Wenliang (Bill) Li @ Hadron Femtography Workshop 2023

Aug/6/2023

Center for Frontiers in Nuclear Science

Outline

- Revisit 6 GeV *u*-Channel data
- What are we probing?
 - A GPD like framework on backward proton structure (nucleon-photon Transition Distribution Amplitudes)
 - Are we probing the Baryon junction? [New Content]
- Experimental road map from JLab12 to EIC
 - Hall C
 - A triple coincidence experiment
 - Or do we even need a detector? [New Content]
 - CLAS 12 and SoLID [New Content]
 - Must map out -t distribution!
 - u-Channel DVCS at EIC (see nice presentation from Alex Jenstch)

Gifted Backward-angle Observables

• Fpi-2 (E01-004) 2003

FREE!

- Spokesperson: Garth Huber, Henk Blok
- Standard HMS and SOS (e) configuration
- Electric form factor of charged π through exclusive π production
- Primary reaction for Fpi-2
 - ∘ H(e, e' π⁺)n
- In addition, the experiment fortuitously received
 - p(e,e' p)ω
- Kinematics coverage
 - $W= 2.21 \text{ GeV}, Q^2=1.6 \text{ and } 2.45 \text{ GeV}^2$
 - Two ϵ settings for each Q^2

t-Channel π ⁺ vs u-Channel ω Electroproduction

• Primary reaction for Fpi-2

- H(e, e' π⁺)n
- n (940 MeV)
- \circ π^+ (140 MeV)

• Unexpected reaction:

- Η(e,e' p)ω
- p (940 MeV)
- ω (783 MeV)

Mark Strikman & Christian Weiss: A proton being knocked out of a proton process

Two Key Discoveries from Fpi-2 ω Analysis

Question: Are there u-channel peaks for other processes? Yes!

Probing the *u*-channel observables

- We can't enter EIC era without systematically study u-channel interactions! (Will expand on this)
- Only one approved experiment by PAC

Why there is a non-zero *u*-Channel DVCS

Observed at a lower W and Q^2

A Systematic Approach on *u*-Channel Meson Electroproduction

GPD and TDA (Hard Structure Approach)

Description to the unseen side of proton

Complete description of Nucleon

- GPD: It is extracted predominantly based in the forward angle observables.
- **TDA**: meson-nucleon Transition Distribution Amplitude (TDA) only accessible through backward (*u*-channel) meson production.

GPD vs TDA Fact sheet 2

- Factorization: $Q^2 \rightarrow$ large, $-t \rightarrow$ small
- Systematically study forward DVCS & DVMP
- Factorization indicator:
 - σ_L >> σ_T
 - $d\sigma_L/dt \propto 1/Q^6$
- Factorization conclusion results from most meson production channels.

- Factorization: $Q^2 \rightarrow large, -u \rightarrow small (-t \rightarrow large)$
- Systematically study backward DVCS & DVMP?
- Factorization indicator:
 - σ_T >> σ_L

backward

θ(CM)

- $d\sigma_T/dt \propto 1/Q^{10} (d\sigma_T/d\Omega \propto 1/Q^8)$
- Factorization conclusion results from most meson production channels.

GPD vs TDA Fact sheet 3

• Formalism: four compact structures

$$\begin{split} &\int_{-1}^{1} dx H_q(x,\xi,t) = F_1^q(t), \quad \int_{-1}^{1} dx E_q(x,\xi,t) = F_2^q(t), \\ &\int_{-1}^{1} dx \tilde{H}_q(x,\xi,t) = G_A^q(t), \quad \int_{-1}^{1} dx \tilde{E}_q(x,\xi,t) = G_P^q(t), \end{split}$$

• Formalism: experimentalist friendly, directly linked to cross section (example later)

$$H^{\pi N}_{s.f.} = \{V^{\pi N}_{1,2}, A^{\pi N}_{1,2}, T^{\pi N}_{1,2,3,4}\} \quad \pi {\leftrightarrow} \mathsf{p} \, \mathsf{TDAs}$$

$$H_{s.f.}^{\gamma N} = \left\{ V_{1arepsilon}^{\gamma N}, A_{1arepsilon}^{\gamma N}, \, T_{1arepsilon,\,2arepsilon}^{\gamma N}
ight\}$$
 y \leftrightarrow p TDAs

12

GPD vs TDA Fact sheet 4

- Only consider t-Channel σ peak (ignores u-channel σ peaks)
- No direct experimental access to GPD, intermediate theory framework is needed, Compton Form Factor is required.

$$\begin{aligned} \mathcal{F} &= \int_{-1}^{+1} dx \, F(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) \\ \tilde{\mathcal{F}} &= \int_{-1}^{+1} dx \, \tilde{F}(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} + \frac{1}{\xi + x - i\epsilon} \right) \\ H, E, \quad \tilde{\mathcal{F}} &= \tilde{\mathcal{H}}, \quad \tilde{\mathcal{E}}, \quad F = H, E, \quad \tilde{F} = \tilde{H}, \quad \tilde{E}. \end{aligned}$$

F

- Only consider *u*-Channel σ peak (ignores *t*-channel σ peaks)
- **Require Empirical Nucleon Distribution** Amplitude as input, example
 - **KS:** King and Sachrajda nucleon wave 0 functions parameterization
 - **COZ:** Chernyak, Ogloblin and I. R. Zhitnitsky 0 nucleon wave functions parameterization

TDA Meson Production Cross Section

Backward-angle DVCS

• Matrix element directly proportional to:

$$H_{s.f.}^{\gamma N}\left(x,\,\xi_{u},\Delta^{2}\right) = H_{s.f.}^{\gamma N}(x,\,\xi_{u}) \times G\left(\Delta^{2}\right) \quad \Delta^{2} \equiv u$$

$$H_{s.f.}^{\gamma N} = \left\{V_{1\varepsilon}^{\gamma N},A_{1\varepsilon}^{\gamma N},\,T_{1\varepsilon,\,2\varepsilon}^{\gamma N}\right\} \gamma \leftrightarrow \text{p TDAs}$$

u-slope Transition Form Factor

Objectives:

- Offering the strongest evidence to validate TDA factorization
 - Ο
 - Proving $\sigma_T > \sigma_L$ and demonstrating $\sigma_T \propto 1/Q^8$ Help model development by offering experimental Ο constraints
- Data contain unique (complementary) information what is not described by GPD

How do We Know TDA is not crazy? (Evidences)

Looking for **Baryon Junction** via Exclusive u-Channel Processes

A: implies quark carries fractional baryon number

B: existence of a **"Junction" like structure** that carries the baryon number. (D. Kharzeev, <u>https://arxiv.org/abs/nucl-th/9602027</u>, 1996)

https://indico.bnl.gov/event/18414/contributions/76065/attachments/47619/80734/xzb2EIC2D_05172023v2pdf.pdf

Probing Baryon Junction with A-A at RHIC

Charge vs. baryon transport in A+A collisions:

• If Valence quarks carry electric charge & baryon number:

$$rac{Z}{
m Charge \ Stoppoing} imes rac{
m Baryon \ Stopping}{A} \cong 1$$

• If valence quarks carry electric charge & junctions cary baryon number

$$rac{Z}{ ext{Charge Stoppoing}} imes rac{ ext{Baryon Stopping}}{A} \, > \, 1$$

Tommy Tsang (KSU) for STAR, APS GHP 2023

Theory: Quark Models: equal or less baryon compared to electric charge

Data: More baryon transported to central rapidity than electric charge

Looking for **Baryon Junction** via Exclusive u-Channel Processes

A: implies quark carries fractional baryon number

B: existence of a **"Junction" like structure** that carries the baryon number. (D. Kharzeev, <u>https://arxiv.org/abs/nucl-th/9602027</u>, 1996)

How do we probe this in JLab 12 GeV?

- Can we directly probe the "junction" structure?
- May be. If manage to force the transfer of baryon number in the target and recoil particles, then Yes.

Probing Baryon Junction Via Charge Stopping

- How do we know if we are probing the "junction"? Hypostasis

 - No junction: u-Channel cross section suppressed
 valence quark contribution
- The JLab and EIC data are equally critical to test the hyposased x_B

E12-20-007 Backward-angle 1 H(*e*,*e*'*p*) π^{0}

 π^0

e

- Q² coverage: 2.0 < Q² < 6.25 GeV², at x=0.36 and W > 2 GeV L/T separated cross section @ Q²= 2, 3, 4 and 5 GeV².
- *u* coverage: 0 < -*u*' +0.5 < 0.5 GeV²
- Additional W scaling check @ Q² = 2 GeV²
- Additional Q^2 scaling check (a) $Q^2 = 6.25 \text{ GeV}^2$

Proposing A Triple Coincidence measurement: ¹H(*e*,*e'p*γ)

~200-500 MeV Real Photon

How We Really Need a Triple Coincidence Measurement?

H. Rahimtula, el. al., Hall C VCS experiment

- Recent 12 GeV VCS measurement revealed HMS+SHMS might be sufficient in extracting the u-Channel DVCS peak
- SImulation study is needed!
- We might not need a triple coincidence experiment.
- SHMS+HMS coincidence for a lot longer!

No Bethe-Heitler in u-Channel Kinematics

What can we do at JLab 12 GeV?

Hall C

- L/T separation offers the best theory constraints.
- High Luminosity of Hall C allows the measurement (low cross section) to be completed faster.
- Last chance in our lifetime to attempt this measurement.

CLAS12 and SoLID

- Full -t distribution
- Large phasespace coverage
- An upgrade needed

u-Channel Opportunities at CLAS 12

Harvesting u-channel meson production cross section at near u_{min} kinematics at Hall B CLAS12 (expert opinion by S. Diehl)

- π^{0} : good acceptance for -*t* of 5-6 GeV². u-channel measurements not possible.
- π^+ : full coverage of the *t* and *u* acceptance.
- $\rho/\omega \rightarrow \pi^+\pi^-$: decay well measured, full coverage of the *t* and *u* acceptance.
- $\phi \rightarrow K^+K^-$: full coverage of the t and u acceptance, very limited statistics at small *u*.

Greatly appreciate Stefan Diehl for these insights and Marco for providing guidance on implementation for the near future

Possibility to address *u*-channel π^0 issue in the near future? Question from Messina Workshop: Will a coverage extending to 150° be enough?

u-Channel DVCS at CLAS 12 with upgrade

backward Photon tag

Conclusion:

- A coverage at 170° is needed to match Hall C LT separated cross section points.
- DVCS will be much easier than π° , assuming CLAS could reject single photon pion events.

Tagging u-Channel DVCS with SoLID

• If the CLAS 12 GeV backward tagging of DVCS is a reality, the same tagging system can be applied to the SoLID!

Thank the organizers for a fantastic and well organized workshop!

u-channel DVCS at EIC?

Nilanga's High Luminosity Spectrometer: study is needed

Hadronic Model: Transition (Evolution) of Proton Structure

Nucleon DA Difference

Objective 2: TDA Prediction #1 $\sigma_{\tau} > \sigma_{\mu}$

Objective 2: L/T Separated Cross section

- TDA predicts $\sigma_{\rm T} > \sigma_{\rm L}$
- Experimental criteria for concluding σ_T dominance: σ_T / σ_L increases as a function of Q^2 and reaches $\sigma_T / \sigma_L > 10$ at $Q^2 = 5 \text{ GeV}^2$

Objective 3: TDA Prediction #2, $\sigma_T \propto 1/Q^8$ Scaling

 $\sigma vs Q^2$ (CLAS 6 π^+ result)

Objective 3: L/T Separated Cross section

- TDA predicts $\sigma_{\rm T} \propto 1/Q^8$.
- TDA predicts $\sigma_1 \sim 0$, not a leading order leading twist contribution effect.
- Experiment designed to (**Q**²)ⁿ, 3.75 < n < 4.25

u-Channel studies at EIC

7.4 Understanding Hadronization

There is great potential also in studying **new particle production mechanisms** such as exclusive backward *u*-channel production. Given its high luminosity the EIC may be able to discover fundamental QCD particle production processes with low cross sections such as via hard (perturbative) *C*-odd three gluon exchange.

- As postdoctoral fellow at JLab EIC Center: developed Backward π^{θ} program for EIC
 - Offers synergy to other planned data set
 - Feasibility studies included as part of the EIC Yellow report (published last week)

Objective 1: Backward-angle Peaks

The Rosenbluth Separation

- Rosenbluth Separation requirements:
 - Separate measurements at different ε (virtual photon polarization)
 - All Lorentz invariant physics quantities: Q², W, t, u, remain constant
 - Beam energy, scattered e angle and virtual photon angle will change as the result, thus event rates are dramatically different

Iterative Procedure (Recipe) to a LT Separation

u-channel DVCS and TCS

Mandelstam Variable

Objective 2: *u*-dependence

Objective 2: u-dependence of the separated cross section

• Extracting -u dependence of the unseparated cross section and interaction radius:

$$\sigma = A e^{-b \, \cdot \, |u|}, \quad r_{int} = \sqrt{b} \, \hbar \, c$$

• Study of parameter *I* as function of *Q*², probe the proton structure transition from hadronic to partonic degrees of freedom. (Similar to the study by Halina Abramowicz, Leonid Frankfurt, Mark Strikman, arXiv:hep-ph/9503437, 1995.)

u-Channel Opportunities at CLAS 12

- 0 < Q² < 1.2 GeV kinematics only available with CLAS 12
- Offering unique opportunity

44

Past VCS and A Proposed ¹H(e,e'pγ)

First Dedicated Backward Angle Experiment

- Probing backward-angle (*u*-channel)
 electroproduction of π⁰ : E12-20-007
 - First presented as Letter of Intent in 2018
 - Full proposal submitted in 2020
- Received full approval by JLab Program Advisory Committee (PAC):
 - Experiment fully approved for 29 PAC days
 - Projected beam time: 48 days (48 * \$800k = \$ 30M in electricity bill from tax payer)
- PAC recognized the pioneering nature of the measurement
 - The exploration of backward pion electroproduction is feasible, and JLab is an ideal venue at which to perform it.
- Significant symbolic meaning: First approved dedicated u-channel experiment

