TCS measurements at JLab Hall D

Keigo Mizutani

Towards improved hadron femtography with hard exclusive reactions 2023
9-Aug-2023

Timelike Compton Scattering (TCS)

- $\gamma p \rightarrow p^{\prime} \gamma^{*}$ with a high timelike virtuality
- Time-reversal symmetric process to DVCS $\left(\gamma^{*} p \rightarrow p^{\prime} \gamma\right)$
- Gives access to the real part of Compton amplitude, and provides constraints for modeling the GPDs

TCS process
~ 100 times smaller cross section

BH process

BH-TCS interference is projected out by measuring the asymmetry arising from the exchange of $\mathrm{e}^{-} \mathrm{e}^{+}$.

Forward-Backward Asymmetry (AFB)

Decay angles (θ, ϕ) of $\gamma^{*} \rightarrow e^{-} e^{+}$in the helicity system

$$
\text { Decay angies }(0, \varphi) \text { of } r \text { e e in me nencity system }
$$

$\mathrm{BH}-\mathrm{TCS}$ interference term is projected out
FB asymmetry .. asymmetry arising from the exchange of $e^{-} e^{+}$

$$
A_{\mathrm{FB}}\left(E_{\gamma}, t, Q^{\prime 2}, \theta, \phi\right)=\frac{d \sigma(\theta, \phi)-d \sigma(\pi-\theta, \phi+\pi)}{d \sigma(\theta, \phi)+d \sigma(\pi-\theta, \phi+\pi)}=\frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)+d \sigma_{\mathrm{TCS}}(\theta, \phi)} \sim \frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)}
$$

Forward-Backward Asymmetry (AFB)

$$
A_{\mathrm{FB}}\left(E_{\gamma}, t, Q^{\prime 2}, \theta, \phi\right)=\frac{d \sigma(\theta, \phi)-d \sigma(\pi-\theta, \phi+\pi)}{d \sigma(\theta, \phi)+d \sigma(\pi-\theta, \phi+\pi)}=\frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)+d \sigma_{\mathrm{TCS}}(\theta, \phi)} \sim \frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)}
$$

Non-zero asymmetries are expected due to the interference b/w BH and TCS.
\rightarrow confirmed by CLAS measurements in 2021.

- Photon beam from coherent bremsstrahlung off thin diamond
- Photon energy tagged by scattered electron: 0.2% resolution
- Beam collimated at $75 \mathrm{~m},<35 \mu \mathrm{rad}$
- Intensity: $\sim 5 \times 10^{7-108} \mathrm{\gamma} / \mathrm{sec}$
- Data sets: GlueX-I + 2020 (part of GlueX-II)
- FB asymmetry: Unpolarized asymmetry
- Photon polarization is not required
- Other polarized observables are useful to extract GPD info. (cf. M. Boër et al., PoS(DIS2015)028, Future work)

Experimental Acceptance

CLAS measured $A_{F B}$ at $50^{\circ}<\theta<80^{\circ},-40^{\circ}<\phi<40^{\circ}$. GlueX can access (θ, ϕ)-dependence.

At these BH singularity regions ($\mathrm{d} \sigma_{\mathrm{BH}}=\infty$), TCS information cannot be extracted. Instead, $A_{\text {FB }}$ at these regions can be used for a cross-check of the acceptance calculations.

Thanks to hermeticity, GlueX has the large acceptance,
and (θ, ϕ)-dependence of $A_{F B}$ is accessible.

$$
A_{\mathrm{FB}}(\theta, \phi)=\frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)}=0 \quad\left(d \sigma_{\mathrm{BH}}=\infty\right)
$$

e/r separation by p/E

π BG sample is created by "anti-electron" cut $(<p / E>+3.5 \sigma<p / E \ll p / E>+4.5 \sigma)$.
Its scale is a fitting parameter.
π subtracted
π subtracted

$B C A L, 40^{\circ}<\theta<60^{\circ}$

FOAL, $40^{\circ}<\theta<60^{\circ}$

$$
\begin{equation*}
- \tag{F}
\end{equation*}
$$

e-e+ invariant mass spectrum

- Kinematic fitting (constrained mostly by the recoil proton)
- BH region (1.2-2.5 GeV) is used to obtain FB asymmetry
- J/ ψ region can be used for a cross-check $(\mathrm{J} / \psi$ FB asym. $=0)$

Acceptance correction by MC simulation

Acceptance correction is carried out by using MC samples. To check the validity of this correction, following items are checked:

1. FB asymmetry for J / ψ should be zero consistent for any (θ, ϕ).
2. Acceptance is corrected by π sample (assuming AFB $^{\text {for }} \gamma p \rightarrow \pi^{+} \pi^{-} p$ is zero).
3. FB asymmetry for BH singularity regions should be zero consistent.

Cross-check 1. FB-asymmetry for J/ Ψ

\#J/ 4 : 3994.6

No t cut
$A_{\text {fB }}(\theta, \phi)=0$ for J / ψ since J / ψ doesn't care about the charge exchange of daughter particles ($\mathrm{e}^{+} \mathrm{e}^{-}$).

Obtained Zero-consistent $\mathrm{A}_{\mathrm{FB}}(\theta, \Phi)$ for J / ψ at any angle (θ, ϕ).

Cross-check 2. Correction with π events (w/o MC)

Assuming pion $A_{F B}=0$, efficiencies can be corrected using pion events.

$$
A_{\mathrm{FB}}(\theta, \phi)=\frac{d \sigma(\theta, \phi)-d \sigma\left(180^{\circ}-\theta, 180^{\circ}+\phi\right)}{d \sigma(\theta, \phi)+d \sigma\left(180^{\circ}-\theta, 180^{\circ}+\phi\right)} \approx \frac{\frac{\mathrm{yield}_{e+e}-(\theta, \phi)}{\operatorname{yield}_{\pi+\pi}-(\theta, \phi)}-\frac{\mathrm{yield}_{e}+_{e}-\left(180^{\circ}-\theta, 180^{\circ}+\phi\right)}{\mathrm{yield}_{\pi+\pi}-\left(180^{\circ}-\theta, 180^{\circ}+\phi\right)}}{\frac{\operatorname{yield}_{e+e}-(\theta, \phi)}{\mathrm{yield}_{\pi+\pi}+(\theta, \phi)}+\frac{\mathrm{yield}_{e}+e_{e}-\left(180^{\circ}-\theta, 180^{\circ}+\phi\right)}{\mathrm{yield}_{\pi+\pi}+\left(180^{\circ}-\theta, 180^{\circ}+\phi\right)}}
$$

Overall, the results are consistent with MC-based efficiency calculations.

Cross-check 3. $\mathrm{A}_{\text {ғв }}$ at BH singularity regions

At BH singularity regions, $\mathrm{A}_{\text {FB }}$ is reasonably zero-consistent.

Comparison with CLAS results

$A_{\mathrm{FB}}(\theta, \phi)=\frac{d \sigma(\theta, \phi)-d \sigma(\pi-\theta, \phi+\pi)}{d \sigma(\theta, \phi)+d \sigma(\pi-\theta, \phi+\pi)} \sim \frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)} \quad$ at $50^{\circ}<\theta<80^{\circ},-40^{\circ}<\phi<40^{\circ}$ (CLAS region)

GlueX shows consistent results with CLAS at their $\left(50^{\circ}<\theta<80^{\circ},-40^{\circ}<\phi<40^{\circ}\right)$ region.

(θ, ϕ)-dependence of the FB asymmetry

Red: $\cos \phi$ (w/o offset term)
Blue: $\cos \phi+$ constant term
At small θ, ϕ-dependence of $A_{F B}(\theta, \phi)$ cannot be explained by the simple $\cos \phi$ shape w/o constant term.

Theory papers predict $\sim \cos \phi$ shape w/o constant term at TCS region $\left(45^{\circ}<\theta<135^{\circ}\right)$.

$$
A_{\mathrm{FB}}(\theta, \phi)=\frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)+d \sigma_{\mathrm{TCS}}(\theta, \phi)} \sim \frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)}
$$

Kinematic factor " L " strongly depends on ϕ, but canceled out by taking the ratio. $\rightarrow A_{F B} \sim \cos \phi$ at the leading order

Theoretical prediction

$$
A_{\mathrm{FB}}(\theta, \phi)=\frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)+d \sigma_{\mathrm{TCS}}(\theta, \phi)} \sim \frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)}
$$

$L=\left[(q-k)^{2}-m_{\ell}^{2}\right]\left[\left(q-k^{\prime}\right)^{2}-m_{\ell}^{2}\right]$

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{\mathrm{BH}}}{\mathrm{~d} Q^{\prime 2} \mathrm{~d} t \mathrm{~d}(\cos \theta) \mathrm{d} \varphi}=\frac{\alpha_{\mathrm{em}}^{3}}{4 \pi\left(s-M^{2}\right)^{2}} \frac{\beta}{-t L} \\
& \quad \times\left[\left(F_{1}^{2}-\frac{t}{4 M^{2}} F_{2}^{2}\right) \frac{A}{-t}+\left(F_{1}+F_{2}\right)^{2} \frac{B}{2}\right]
\end{aligned}
$$

- L comes from the interference b/w 2 BH diagrams.
- L in dб⿱宀в is reasonable
- L in dodint is not straightforward
- Timelike Compton scattering can be accessible with GlueX detector
- Thanks to the large acceptance, (θ, Φ)-dependence of FB asymmetry can be accessed.
- Following items were checked:
- Zero-consistent asymmetries for J / ψ
- Acceptance correction by π gives consistent results
- Zero-consistent asymmetries at BH singularity regions
- Consistent results with CLAS at $50^{\circ}<\theta<80^{\circ},-40^{\circ}<\phi<40^{\circ}$
- To understand (θ, ϕ)-dependence, theoretical supports are essential.
- Marie Boër suggested linearly polarized observables are also useful to extract GPD information. (cf. M. Boër et al., PoS(DIS2015)028, Future work)

Backup
20
20

Comparison with CLAS results

$A_{\mathrm{FB}}(\theta, \phi)=\frac{d \sigma(\theta, \phi)-d \sigma(\pi-\theta, \phi+\pi)}{d \sigma(\theta, \phi)+d \sigma(\pi-\theta, \phi+\pi)} \sim \frac{d \sigma_{\mathrm{INT}}(\theta, \phi)}{d \sigma_{\mathrm{BH}}(\theta, \phi)} \quad$ at $50^{\circ}<\theta<80^{\circ},-40^{\circ}<\phi<40^{\circ}$ (CLAS region)
$1.5<\mathrm{M}<3.0,50<\theta<80,-40<\phi<40$

$2.0<\mathrm{M}<3.0,50<\theta<80,-40<\phi<40$

GlueX shows consistent results with CLAS at their $\left(50^{\circ}<\theta<80^{\circ},-40^{\circ}<\phi<40^{\circ}\right)$ region.

Acceptance correction by MC simulation

Acceptance correction is carried out by using MC samples.
To check the validity of this correction, following items are checked:

1. FB asymmetry for J / ψ should be zero consistent for any (θ, ϕ).
2. Acceptance is corrected by π sample (assuming $A_{F B}$ for $\gamma p \rightarrow \pi^{+} \pi^{-} p$ is zero).
3. FB asymmetry for BH singularity regions should be zero consistent.
