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Motivation

Transition GPDs

Factorization  QCD operators→

This presentation

Overview of concepts, methods, processes

Transition matrix elements , resonancesN → πN

Processes
 in DVCSN → Δ

Chiral dynamics,  expansion1/Nc
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Structure  excitations in QM systems↔

[  in vector meson production]N → X

  in  productionN → Δ, N* π, η

  in  productionN → Λ, Σ K, K*

Applications to JLab12+ and EIC

Much progress in theory

EM tensor and mechanical properties

First results from JLab12  Talk K. Joo→

←
←

←
←

https://indico.phys.vt.edu/event/58/


2Structure and excitations in QM systems

Internal structure and excitation spectrum 
are closely related aspects of QM systems

Example: Nuclear shell model 
Mean-field structure of ground state   
Single-particle excitation spectrum

↔
...

Example: Collective motion 
Semiclassical structure   
Rotational excitation spectrum

↔

Same applies to hadron structure in QCD!



3Transition GPDs: Hard exclusive processes

Factorization

Asymptotic regime Q2, W2 ≫ μ2
𝗁𝖺𝖽, | t | ∼ μ2

𝗁𝖺𝖽

Production process communicates with target through 
QCD light-ray operators  𝒪(z) = ψ̄(0) . . . ψ(z)z2=0

Physics interest in transitions H → H′ 

Learn about structure of excited states:

2

Mγ,

H

Q,

H’

W

GPD

hard

Works for any transition with mH′ − mH ∼ μ𝗁𝖺𝖽

Realize operators with quantum numbers not accessible with local vector/axial currents: 
Spin  — energy momentum tensor, gluon operators, quarks  antiquarks C-parity≥ 2 ↔

Hadronic matrix elements  GPDs⟨H′ |𝒪(z) |H⟩ ↔

Learn more about operator: Quantum numbers, spin-flavor components?

Use well-defined QCD operators from factorization theorem:  
Renormalization, scale dependence, universality  LQCD, nonperturbative methods→



4Transition GPDs: Resonances

⟨πN |𝒪 |N⟩ =
⟨πN |Δ⟩ ⟨Δ |𝒪 |N⟩

sπN − M2
Δ

+ less singular

Multihadron final state, e.g. πN

N

π

N

π

∆

pole

GPD

N
N

GPD sπN}

Analytic continuation in invariant mass :  
Pole at , resonance structure defined at pole, residue factorizes

sπN
sπN = M2

Δ

Rigorous definition of “resonance GPDs” using methods of S-matrix theory

Physical region: Resonant + non-resonant contributions, needs theory

Definition of resonance GPDs



5Theoretical methods: Chiral dynamics

Near-threshold region kcm ∼ Mπ

GPD

N
N

π

k cm
Pion emission governed by chiral dynamics

Soft-pion theorems relate  and  matrix elements: 
,   

N → πN N → N
⟨πN |𝒪 |N⟩ ↔ ⟨N |𝒪′ |N⟩ 𝒪′ ∼ [𝒪, Jμ

5 ]

Corrections calculable in ChPT

Systematic approach in near-threshold region 
Practically applicable in S-wave; limited by  resonance in P-waveΔ
Guidal et al 2003

Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

Kivel, Polyakov 2004



6Theoretical methods: 1/Nc expansion

Semiclassical limit of QCD 

= I = 1/2, 3/2S

Large-  limit of QCDNc

Hadron masses, couplings, matrix elements scale in  
“Organization” of non-perturbative dynamics

Nc

Emerging dynamical spin-flavor symmetry  
Baryons in multiplets with masses , splittings 

SU(2Nf )
O(Nc) O(1/Nc)

 and  transitions related by symmetry: N → N N → Δ
⟨Δ |𝒪 |N⟩ = [symmetry factor] × ⟨N |𝒪 |N⟩

 expansion of hadronic matrix elements1/Nc

Parametric expansion: Systematic, predictive, controlled accuracy

Applied to current matrix elements, hadronic amplitudes

baryon mass

(Nc)

O (1/ )cN

O (1/ )cN

N, ∆

N *

O

‘tHooft 1974, Witten 1979

Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993

Vector and axial currents: Fernando, Goity 2020



7Theoretical methods: 1/Nc expansion

Hierarchy of spin-flavor components of GPDs

 expansion of  GPDs1/Nc N → N

spin−flavor symmetry

∆

GPD

QCD operator

N N, Extended to chiral-odd operators

 expansion of  transition GPDs1/Nc N → Δ

Leading structures, dynamical predictions from N → N

Full  expansion including subleading corrections  
can be performed using group-theoretical methods

1/Nc

Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000

Börnig et al. 1998; Goeke, Polyakov, Vanderhaeghen 2001

Schweitzer, Weiss 2016

Goity, Jun-Young Kim, Weiss, planned

Chiral-odd operators
Kroll, Passek-Kumericki 2023

γ+, γ+γ5

σ+Tγ5 chiral-odd

chiral-even



8Theoretical methods: Other approaches

Lattice QCD: Partonic operators using quasi/pseudo PDF approach 
Excited states using “distillation” methods developed for hadron spectroscopy 
Long-term prospect of calculating  transition GPDsN → B

Holography: Models of non-perturbative QCD based on gauge-string duality 
Close connection spectrum  structure 
First applications to partonic structure and GPDs

↔

 Talks Richards, Zhao→

 Talks Mamo, Zahed→



9Energy-momentum tensor form factors

EMT operator as 2nd x-moment of light-ray operator

: Extensive studies, “mechanical properties”N → N

 transition EMT form factorsN → Δ

Transition matrix elements: Form factors, multipoles

Transition angular momentum formulated as light-front density

J-Y Kim 2022 + in progress

Ji 1996, Polyakov 2003, Lorce et al. 2013+

J-Y Kim, H-Y Won, Goity, Weiss, 2023

N,

t

µν

N ∆

T

T
+T (b)

b

N N, ∆

EMT form factors describe distributions of momentum, 
angular momentum, forces in system

Jz(N → Δ) = ∫ d2b b × ⟨Δ |T+T |N⟩

Probes isovector quark angular momentum u − d



10Energy-momentum tensor form factors

 expansion connects AM in  and  1/Nc N → Δ N → N

Large-Nc light-front chiral quark-soliton model: J-Y Kim 2023

Goeke, Vanderhaeghen, Polyakov 2000; Kim, Won, Goity, Weiss, 2023

JV(p → p) =
1

2
JV(p → Δ+) = 5JV(Δ+ → Δ+)

expansion of the 3D components of the EMT matrix element re-
spects 3D rotational invariance, the matching procedure imple-
ments 3D rotational invariance for the light-front components
of the matrix element; this property is not manifest in the light-
front formulation and imposes conditions on the light-front ma-
trix elements.2

We have computed the 1/Nc expansion of the 3-dimensional
multipoles of the EMT in the symmetric frame Eq. (15) using a
method based on the soliton picture of large-Nc baryons [3, 35];
equivalently one can use methods based on the algebra of the
spin-flavor symmetry group [22, 23]. The full results will be
presented elsewhere [36]; in the following we quote only the
multipoles relevant to the AM. In leading order of 1/Nc, the
matrix elements of the isoscalar and isovector components [see
Eq.(2)] of T 0k are of the form

hB0,�/2|(T̂ S )0k |B,��/2i = 2m2hS iiB0B
"
i✏kil�

l

m
J

S
1 (t) + ...

#
,

(19)

hB0,�/2|(T̂ V )0k |B,��/2i = 2m2hD3iiB0B
"
i✏kil�

l

m
J

V
1 (t) + ...

#
,

(20)

where we have omitted spin-independent terms / �k that do not
contribute to the AM. The spin/isospin dependence is contained
in the structures (here i = 0,±1 denote the spherical 3-vector
components)

hS iiB0B =
p

S (S + 1) hS S3, 1i|S 0S 03i �S 0S �I0I�I03I3 , (21)

hD3iiB0B = �
r

2S + 1
2S 0 + 1

hS S3, 1i|S 0S 03i hII3, 10|I0I03i. (22)

S i has only matrix elements between same spin/isospin, while
D3i can connect states with spin/isospin di↵ering by one.3 Thus
(T̂ )S in Eq. (19) contributes only to N ! N and � ! � transi-
tions, while N ! � transitions arise only from (T̂ )V in Eq. (20).
J

S ,V
1 (t) in Eqs. (19) and (20) are the isoscalar and isovector

dipole form factors. They are found to be of the order [36]

J
S
1 = O(N0

c ), J
V
1 = O(Nc). (23)

The matrix elements of T 3k are suppressed by 1/Nc compared to
those of T 0k in both the isoscalar and isovector sector. The light-
front component T+i is therefore given by T 0k in leading order
of the 1/Nc expansion, and we can compute the AM Eq. (8)
from Eqs. (20)–(23). We find:

2A similar procedure of matching light-front matrix elements with 3-
dimensional Breit frame matrix elements is used in the construction of current
operators in dynamical models of interacting few-body systems in light-front
quantization (so-called angular conditions); see Refs. [31, 32, 33, 34] and ref-
erences therein. In our study here we do not construct an EMT operator in terms
of constituent degrees of freedom but work directly with the matrix elements
provided by the 1/Nc expansion.

3The matrix elements Eq. (21) and (22) appear from the collective quan-
tization of the soliton rotations [3, 35]. In the formulation of the 1/Nc ex-
pansion based on the SU(4) spin-flavor symmetry [21, 22, 23], hDaiiB0B(i, a =
1, 2, 3) is related to the matrix element of the spin-flavor generator Gia, namely
hDaiiB0B = �4/(Nc + 2)hGiaiB0B + O(N�2

c ).

Lattice QCD JS
p!p JS

�+!�+ JV
p!p JV

p!�+ JV
�+!�+

[9] µ2 = 4 GeV2 0.33⇤ 0.33 0.41⇤ 0.58 0.08
[10] µ2 = 4 GeV2 0.21⇤ 0.21 0.22⇤ 0.30 0.04
[11] µ2 = 4 GeV2 0.24⇤ 0.24 0.23⇤ 0.33 0.05
[12] µ2 = 1 GeV2 � � 0.23⇤ 0.33 0.05
[13] µ2 = 4 GeV2 � � 0.17⇤ 0.24 0.03

Table 1: Estimates of the isoscalar and the isovector AM for p ! p, p ! �+
and �+ ! �+ obtained from lattice QCD data on JS

p!p and JV
p!p and the

relations provided by the leading-order 1/Nc expansion. Here S ,V ⌘ u ± d,
and the nucleon matrix elements are normalized as in Eq. (14). Input values are
marked by an asterisk ⇤.

(i) The isovector AM in the nucleon is leading in 1/Nc; the
isoscalar is subleading.

JS
N!N = J

S
1 (0) = O(N0

c ), JV
p!p = �

2
3
J

V
1 (0) = O(Nc). (24)

This explains the observed large flavor asymmetry of the AM.
Note that this scaling is consistent with that of the quark spin
contribution to the nucleon spin as given by the axial coupling,
gS

A = O(N0
c ) and gV

A = O(N1
c ).

(ii) The isoscalar component of the AM in the nucleon and �
are related by

JS
N!N = JS

�!� = J
S
1 (0). (25)

This provides insight into the spin structure of � resonance.
Note that this relation is consistent with the spin sum rule for
the � state.

(iii) The isovector AM in the nucleon, the AM in the N ! �
transitions, and the isovector AM in the � are related by

JV
p!p =

1p
2

JV
p!�+ = 5JV

�+!�+ = �
2
3
J

V
1 (0). (26)

This suggests that the N ! � transition AM is large and pro-
vides a way to probe the isovector nucleon AM with N ! �
transition measurements.

4. N ! � transition angular momentum from lattice QCD

We now evaluate the transition AM using the leading-order
1/Nc expansion relations together with lattice QCD results for
the EMT matrix elements. This provides a numerical estimate
of the transition AM and illustrates the dominance of the isovec-
tor component of the nucleon AM. Lattice QCD calculations
of N ! N matrix elements of the symmetric EMT Eq. (1)
have been performed in various setups (fermion implementa-
tion, normalization scale, pion mass) [9, 10, 11, 12, 13]. Using
these as input, we obtain the values listed in Table 1. One ob-
serves that a sizable isovector component of the nucleon AM
is obtained in all lattice calculations (similar large values are
obtained in the chiral quark-soliton model [37]). Note that the
lattice results for the isoscalar nucleon AM in Refs. [9, 10, 11]
are more uncertain than the isovector, as they involve discon-
nected diagrams and require careful treatment of the mixing of

4

 transition AM estimated using  
lattice QCD results for  
N → Δ

p → p

Measurements of  transition AM could 
explain/constrain flavor asymmetry of proton AM 

N → Δ
Ju−d

Many interesting questions: Separation of spin and  
orbital AM in  transition — dynamics?N → Δ

8

FIG. 2. OAM quark distribution functions for the proton (upper left panel), �+ baryon (upper right panel), and p ! �+

transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent the lu+d, lu�d,
lu, and ld contributions, respectively.

Since the quark has no relativistic motion in this limit, all observables relevant to the OAM should be zero.
In the case of the proton, the OAM l

u+d is similar in magnitude to l
u�d, indicating that l

d is close to zero.
However, in the �+ baryon, l

u
�+ is twice as large as l

d
�+ . This relation holds exactly for the intrinsic spin �q,

specifically �u�+ = 2�d�+ . In addition, it is noteworthy that there is a significant flavor asymmetry of the OAM
in the p ! � transition. The normalizations of these quantities can be found in Table I. The equal but opposite
contributions of the u and d quarks to the OAM result in l

u+d
p!�+ = 0. When the OAM and the intrinsic spin are

combined, they give the total AM. As shown in Eq. (28), numerically the total AM is indeed normalized to the baryon
spin.

IV. LARGE Nc ANALYSIS OF THE QUARK DISTRIBUTION FUNCTIONS

Another way to estimate the value of the quark distribution function is to use the spin-flavor structure in the
large Nc limit of QCD. In practice, this structure can be obtained within the chiral soliton approach. One of the
most realistic and representative models of this approach is the �QSM. In this model the various quark distribution
functions have been evaluated [36, 37, 48–50]. From the given quark distribution functions of the nucleon, one can
easily map those of the N ! � transitions by using the spin-flavor symmetry. In fact, the results of this approach are
more reliable than those of the LC�QSM. While in the LC�QSM the infinite tower of higher-fock states is truncated,
all sea-quark contributions (quark-antiquark pairs) are explicitly taken into account in their estimation.

Thus, this section is devoted to the extraction of the quark distribution functions for the N ! � transitions from
those for the nucleon using the leading order 1/Nc expansion relations. While the numerical data for the longitudinally
polarized quark distribution functions for the nucleon in the �QSM are given in Ref. [36, 37], those for the OAM

7

fig1a.pdf

FIG. 1. Longitudinally polarized quark distribution functions for the proton (upper left panel), � baryon (upper right panel),
and p ! �+ transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent
the �u+�d, �u��d, �u, and �d contributions, respectively.

D. Numerical results

To estimate the AM quark distribution functions and their normalizations, we use the explicit quark wave functions
f? and fk, where the values of the dynamical parameters are taken from Refs. [22–24, 45]. We will provide not only
the quark distribution functions for the N ! � transition, but also how many fractions of the intrinsic spin and the
OAM contribute to the N ! � transition AM.

In Fig. 1 we first examined the longitudinally polarized quark distribution functions for the proton, the � baryon,
and theN ! � transition. These distribution functions are parameterized with respect to the single quark distribution
�A, which is normalized as follows:

Z
dx�A(x) = ↵

A = 0.861,

Z
dx�A

NR(x) = ↵
A
NR = 1, (30)

where we have reproduced the numerical values given in Ref. [26]. It is observed that the �u and �d values for the
proton have opposite signs, with �u being positive and �d being negative. However, for the �+ baryon, both �u

and �d have positive signs. Interestingly, in the case of the proton, the isovector component of the axial charge is
significantly larger than the isoscalar component. Conversely, for the � baryon, this relation is reversed. Turning to
the quark distribution functions for the p ! �+ transition, they are naturally induced from the group relation. While
the isoscalar quark distribution functions in the p ! �+ transition are zero, a substantial asymmetry between the light
valence quarks is obtained. The normalizations of these distribution functions are summarized in Table I. Consistent
with the large Nc analysis [7], it is noteworthy that the flavor asymmetries in the intrinsic spin [�u � �d]p!�+ =

�0.812 and in the total AM J
u�d
p!�+ = �0.887 are estimated to be substantial. Note that the sign di↵erence for Ju�d

p!�+

compared to Ref. [7] might depend on the choice of the phases of the baryon states.
Figure 2 illustrates the OAM quark distribution functions. We observe that the OAM contribution l

q to the
baryon spin is relatively small compared to �q. This suggests that the nonrelativistic approximation is a reasonable
approximation for describing the total AM. The OAM is parameterized in terms of the three quark distributions
�L1,L2,L3(x), and their normalizations ↵L1,L2,L3 are estimated as follows:

Z
dx�L1(x) = ↵

L1 = 0.050,

Z
dx�L2,L3(x) = ↵

L2,L3 = �0.010, with �L2(x) = �L3(x). (31)

We then arrive at the value of the isoscalar OAM

l
u+d
p,�+ =

Z
dx

⇥
�L1(x)� �L2(x)� �L3(x)

⇤
=

Z
dx�L(x) = ↵

L = 0.070. (32)

This result is in agreement with the numerical estimate made in Ref. [21]. In the nonrelativistic limit, the OAM quark
distributions apparently become null

�L1,L2,L3

NR (x) = 0. (33)

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010.  
[12] Bali 2019. [13] Alexandrou 2020 V ≡ u − d



11Processes:  and  in DVCSN → πN Δ

e + p → e′ + γ + π0p, π+n (Δ+ resonance)

Experiments

HERMES: Beam spin asymmetry ,  
large exp. uncertainties

ALU

JLab12: First results from CLAS12 Δ+

e + n → e′ + γ + π0n, π−p (Δ0 resonance)

17
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Figure 4: Dependence on the invariant mass of the ⇡+
n system (M⇡N ) of the e�p ! e

�
��(1232) ! e

�
�⇡

+
n cross section (upper panels)

and corresponding beam-spin asymmetry (lower panels), integrated over the pion solid angle, with the cut M⇡� > 1 GeV, for three values of
�t. Blue dashed-dotted curves: p ! �(1232) Bethe-Heitler (BH) process; red dashed curves: p ! �(1232) DVCS process; black solid
curves: BH + DVCS processes. The magenta dotted curves show the ⇡

0-pole contribution to the p ! �(1232) DVCS process separately.

��+ and ⇢
+
n channels, as both decay into the same final state

�⇡
+
n.

Since the main interest in this reaction is to extract informa-
tion on the N ! � GPDs, we pursue in this work the first step
towards a theoretical interpretation of forthcoming e

�
p !

e
�
�⇡

+
n data, by calculating the e

�
p ! e

�
��+(1232) !

e
�
�⇡

+
n contribution. We aim to minimize the contribution

arising from the e
�
p ! e

�
⇢
+
n ! e

�
�⇡

+
n background

process, which is expected to yield a peaked structure around
M⇡� ' 770 MeV with a width around 150 MeV. Therefore,
we show in Fig. 4 the results for the M⇡N invariant mass
dependence in the �(1232) region of the e

�
p ! e

�
�⇡

+
n

cross section and corresponding beam-spin asymmetry (BSA)
in CLAS12 kinematics, with the additional cut M⇡� > 1 GeV.
The latter is chosen to ensure that one is above the ⇢+ produc-
tion region. Furthermore, we choose the angle between the
lepton plane and the �⇤

� production plane in Fig. 1 to be � =
90�, where the BSA becomes maximal. By comparing the t-
dependence between �t = 0.5 GeV2 and �t = 1.0 GeV2, we
notice that in the lower t-range, the BH process dominates the
cross section. In the BH amplitude, the virtual photon prop-
agator has a 1/t behavior, which leads at fixed value of Q2

and xB to a much faster decrease in the cross section, with in-
creasing values of �t, as compared to the DVCS process. We

also note from Fig. 4 that the DVCS process in the �-region
is dominated by the ⇡

0-pole contribution to the N ! � GPD
C2. For the corresponding BSA, which is obtained by flipping
the helicity of the electron beam, we notice that in the lower
�t range, the interference of the imaginary part of the DVCS
amplitude with the BH process leads to a BSA in the range of
10 %. With increasing values of �t, due to the decrease of the
BH process relative to the DVCS process, we notice that the
BSA also gradually decreases.

In Fig. 5, we show the M⇡� invariant mass dependence of
the e

�
p ! e

�
��+(1232) ! e

�
�⇡

+
n cross section con-

tribution when integrating over the �+(1232) peak, i.e. for
1.13 GeV  M⇡N  1.33 GeV. We note that the �+(1232)
production process yields a dependence which is rising with
increasing value of M⇡� , with the dominant strength located
in the region M⇡� > 1 GeV. It thus displays a distinctive dif-
ference from an expected e

�
p ! e

�
⇢
+(770)n ! e

�
�⇡

+
n

contribution, which is peaked around M⇡� ' 770 MeV, and
has a strength largely located in the region M⇡� < 1 GeV.

In Fig. 6, we show the decay pion angular distribution of the
e
�
p ! e

�
��+(1232) ! e

�
�⇡

+
n process integrating over

the �+(1232) peak, i.e. for 1.13 GeV  M⇡N  1.33 GeV.
We note from Eq. (110) that a flat dependence in cos ✓⇤⇡ re-
sults from a �+ produced with same probability in helicity

+ γ

∆

e e

N

e

γ

N

e

∆ π

GPD

N,π N,

FF Probes chiral-even GPDs
Detailed modeling: Semenov-Tian-Shansky, Vanderhaeghen 2023

 Talk K. Joo→

EIC: Far-forward Delta reconstruction?
Various channels, should be simulated
→ Discussion



12Processes:  in  productionN → Δ π, η

Large twist-3 mechanism: Chiral-odd helicity-flip 
GPD + DA, T photon
Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+ 

Describes well JLab 6 GeV  dataN → N

Twist-2 mechanism: Chiral-even helicity-conserving 
GPDs + DA, L photon

 transitionsN → Δ

 expansion correctly predicts flavor structure1/Nc
Schweitzer, Weiss 2016; Kubarovsky 2019

:     leading in ⟨HT⟩ u − d 1/Nc

:     leading⟨ĒT⟩ u + d
CLAS6 2017 Bedlinskiy et al. π0, η

Predictions for  final states using π−Δ++ 1/Nc

CLAS12: Beam spin asymmetry π−Δ++

Frankfurt, Pobylitsa, Polyakov, Strikman 1998
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Kroll, Passek-Kumericki 2023

 Talk K. Joo→

Distinguish chiral-odd/even GPDs through ?N → Δ



13Processes:  in  productionN → Λ, Σ, Σ* K

Symmetry relations for strange chiral-odd GPDs

K

*

+

+

+ −

2
Q, T

N

flip

Λ, Σ

Σ
GPD

hard Same twist-3 mechanism with chiral-odd 
structures as  productionπ, η

  related to    
by conventional SU(3) flavor symmetry
N → Λ, Σ N → N

  related to   
by SU(6) spin-flavor symmetry in large-  limit
N → Σ* N → N, Λ, Σ

Nc

Predictive power; quantitative modeling possible

JLab12
 in CLAS12  production data,  

to be analyzed
p → Λ, Σ, Σ* K

 Talk K. Joo→



14Processes: Vector meson production at small x

Frankfurt, Strikman, Treleani, Weiss PRL 101:202003, 2008

...

2
V

Q

N

elasticGPDN N

X inelasticGPD

Diffractive vector meson production ( ) 
with  transitions

V = J/ψ, ϕ, ρ0

N → X(low-mass)

Probes quantum fluctuations of gluon density in nucleon:

Discussed as part of diffraction at HERA and EIC: 
Inelastic diffraction

High rates at EIC; detection being simulated

ωg ≡
⟨G2⟩ − ⟨G⟩2

⟨G⟩2
=

dσ/dt (γ*N → VX)
dσ/dt (γ*N → VN )

t=0

 0

 0.1
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 0.3

10-4 10-3 10-2 10-1

G
lu
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  d

is
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n 
 ω
g

x

Q2 [GeV2] = 3
10

100
H1 09 ρ

φ

Fluctuations formulated in context of collinear factorization 
and transition GPDs. Alt formulation in dipole model
Schlichting, Schenke 2014; Mäntisaari, Schenke 2016



15Summary

• Factorization theorem for hard exclusive processes as “source” of new operators for 
studying hadronic transitions: well-defined, simple, new spin/charge quantum numbers

•  expansion relates  and  transitions [or  and  for strange] 
through dynamical spin-flavor symmetry: systematic, predictive
1/Nc N → N N → Δ 8 → 8 8 → 10

•  transitions generally as large as  where allowed, similar ratesN → Δ N → N

• First results on  in DVCS and  production from JLab12N → Δ π, η

•  reconstruction with EIC far-forward detectors should be simulated. Different decay modes of 
same  activate different detectors — charged-neutral, neutral-neutral, charged-charged. 
Could be used for tests and calibration, besides physics interest.

Δ
Δ

• Energy-momentum tensor form factors and “mechanical properties” can be generalized  
to  transitionsN → Δ, N*

 Talk K. Joo→



16Announcement: ECT* Workshop on Transition GPDs

ECT* - APCTP Joint Workshop:
Exploring resonance structure with transition GPDs

ECT* Trento, 21-25 August 2023

Organizers:
Stefan Diehl (Justus Liebig Unversity Giessen, Germany)

Charlotte Van Hulse (University of Alcala, Madrid Region, Spain) 

Vladimir Braun (University Regensburg, Germany) 

Seung-il Nam, (Pukyong National University, Republic of Korea)

Kyungseon Joo (University of Connecticut, United States)

Christian Weiss (Jefferson Lab, United States)

[Webpage]

https://www.ectstar.eu/workshops/ect-apctp-joint-workshop-exploring-resonance-structure-with-transition-gpds/
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Supplemental material



18Processes: Forward  at EICΔ

Revealing the structure of light pseudoscalar mesons at the EIC 32

contributions of gluons in pions and kaons as compared to protons. It will finally settle

questions relating to the gluon content of Nature’s NG modes when they are viewed

with very high resolution, and vastly extend the (x, Q
2) range of pion and kaon charts

and meson structure knowledge.

4. Kinematic coverage and detector requirements

4.1. Far-forward area setup.

The far-forward EIC detector is described in detail in the EIC Yellow Report [177].

Figure 10 shows the main elements of this far-forward region. For the detection of

particles of relevance to meson structure studies, all sub-components of the far-forward

area play an important role: detection in the B0 area, detection of decay products

with o↵-momentum detectors, and detection of forward-going protons and neutrons

with the Roman Pots and the Zero-Degree Calorimeter (ZDC).

Figure 10: A sketch of the integrated beam line and detector setup in the Far-Forward

area, along the direction of the proton/ion beam. The sketch is not to scale. The

initial B0-tracker is integrated in the warm area of a combined electron-proton/ion

beam magnet. Then a set of beam line magnetic elements follows that is integrated in

one cryostat. This is followed by o↵-momentum detectors that capture the charged-

particle decay products, roman pots that capture far-forward going protons with nearly

the energy of the proton/ion beams, and the Zero-Degree Calorimeter to capture far-

forward-going neutral particles.

EIC

Far-forward detection system 
Charged hadrons: Forward spectrometer 
Neutral hadrons: Zero-Degree Calorimeter

Forward  reconstruction at EIC?Δ

Forward  detection (with rigidity  1/2 beam) and forward  detection 
have been simulated for  exclusive processes, are well understood

p ≳ n
p → p, n

Forward   detection with ZDC has been explored in connection with u-channel processes  
[A. Jentsch, Wenliang Li et al.]

π0

Forward   detection with rigidity  beam might be possible with B0 tracker 
[A. Jentsch, private communication]

π± ≪

Would be very interesting to simulate  reconstruction at EIC! 
Comparison of decay channels can serve as cross-check and detector calibration 

  or  .    or  

Δ

Δ+ → π+n π0p Δ0 → π0n π−p

Decay pion carries small fraction of  longit. 
momentum:  

Δ
pLπ /pLΔ ≈ Mπ /mΔ ≈ 1/9

 Talk Jentsch→



19Processes: Forward  at EICΛ

 decays  meters from IP, depending on ion beam energyΛ ∼ 1 − 10

Revealing the structure of light pseudoscalar mesons at the EIC 36

Figure 13: The ⇤-decay spectrum along the beam line for di↵erent beam energies.

have been examined: ⇤ ! p+⇡
�, with a branching ratio of 63.9%, and ⇤ ! n+⇡

0, with

a branching ratio of 35.8%. Both channels can be cleanly separated by the di↵erent

charge of the final-state particles, and thus by the di↵erent detector components that

will play a role in their detection.

4.3.1. ⇤ ! p+⇡
�. For this process, there are only charged particles in the final state.

Therefore, one must rely on sub-components along the far-forward area, such as the B0

tracker, the O↵-Momentum trackers, and Roman Pots for detection and reconstruction

of the decay products.

As an example, occupancy plots for the beam-energy setting of 5⇥41 are shown

in figure 14. Since this is the lowest beam-energy setting, most of the ⇤s would decay

in the first metre (before the B0 magnet), and the ⇤ decay products are expected to

have low momenta. Therefore, as expected, protons coming from the ⇤ decays will

mostly be detected, owing to their lower rigidity, in the o↵-momentum detectors (c)

and partially in a B0 tracker (b). While for pions, the tracker inside the B0 dipole will

be the only detecting element (a). As one can also see from this figure, the proton-

beam-pipe aperture inside the B0-dipole plays an important role and sets the detection

e�ciency for pions, as well as the azimuthal angle �-coverage of the detecting elements

around the proton beam-pipe. Further information on the distributions for detected

decay products at these lower beam energies of 5⇥41 are given in figure 15.

For the higher beam-energy settings, e.g. 10⇥100, the protons are to be detected

J. Arrington et al.,J.Phys.G 48 (2021) 7, 075106

Vertex position unknown, wide range of possibilities

Simulations of  reconstruction  performed in context of  structure studies  Λ (pπ−, nπ0) K
J. Arrington et al.,J.Phys.G 48 (2021) 7, 075106

Would be interesting to simulate  reconstruction,  resonance — “strange ”Σ Σ* Δ


