Transition GPDs

C. Weiss (Jefferson Lab), Towards improved hadron femtography with hard exclusive reactions, Jefferson Lab, 7-11 Aug 2023 [Webpage]

This presentation
Overview of concepts, methods, processes
Applications to JLab12+ and EIC
Much progress in theory
First results from JLab12 \rightarrow Talk K. Joo

Motivation

Structure \leftrightarrow excitations in QM systems

Transition GPDs

Factorization \rightarrow QCD operators
Transition matrix elements $N \rightarrow \pi N$, resonances
Chiral dynamics, $1 / N_{c}$ expansion \leftarrow
EM tensor and mechanical properties \leftarrow

Processes

$N \rightarrow \Delta$ in DVCS
$N \rightarrow \Delta, N^{*}$ in π, η production
$N \rightarrow \Lambda, \Sigma$ in K, K^{*} production
[$N \rightarrow X$ in vector meson production]

Structure and excitations in QM systems

Internal structure and excitation spectrum are closely related aspects of QM systems

Example: Nuclear shell model Mean-field structure of ground state \leftrightarrow Single-particle excitation spectrum

Example: Collective motion Semiclassical structure \leftrightarrow Rotational excitation spectrum

Same applies to hadron structure in QCD!

Transition GPDs: Hard exclusive processes

Factorization

Asymptotic regime $Q^{2}, W^{2} \gg \mu_{\text {had }}^{2},|t| \sim \mu_{\text {had }}^{2}$
Production process communicates with target through QCD light-ray operators $\mathcal{O}(z)=\bar{\psi}(0) \ldots \psi(z)_{z^{2}=0}$

Hadronic matrix elements $\left\langle H^{\prime}\right| \mathcal{O}(z)|H\rangle \leftrightarrow$ GPDs
Works for any transition with $m_{H^{\prime}}-m_{H} \sim \mu_{\text {had }}$

Physics interest in transitions $H \rightarrow H^{\prime}$
Learn more about operator: Quantum numbers, spin-flavor components?

Learn about structure of excited states:
Use well-defined QCD operators from factorization theorem:
Renormalization, scale dependence, universality \rightarrow LQCD, nonperturbative methods
Realize operators with quantum numbers not accessible with local vector/axial currents:
Spin ≥ 2 - energy momentum tensor, gluon operators, quarks \leftrightarrow antiquarks C-parity

Transition GPDs: Resonances

Definition of resonance GPDs

Multihadron final state, e.g. πN

Analytic continuation in invariant mass $s_{\pi N}$:
Pole at $s_{\pi N}=M_{\Delta}^{2}$, resonance structure defined at pole, residue factorizes
Rigorous definition of "resonance GPDs" using methods of S-matrix theory

Physical region: Resonant + non-resonant contributions, needs theory

Theoretical methods: Chiral dynamics

Near-threshold region $k_{\mathrm{cm}} \sim M_{\pi}$
Pion emission governed by chiral dynamics

Soft-pion theorems relate $N \rightarrow \pi N$ and $N \rightarrow N$ matrix elements:
$\langle\pi N| \mathcal{O}|N\rangle \leftrightarrow\langle N| \mathcal{O}^{\prime}|N\rangle, \quad \mathcal{O}^{\prime} \sim\left[\mathcal{O}, J_{5}^{\mu}\right]$
Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

Corrections calculable in ChPT
Kivel, Polyakov 2004

Systematic approach in near-threshold region
Practically applicable in S-wave; limited by Δ resonance in P-wave
Guidal et al 2003

Theoretical methods: 1/Nc expansion

Large- N_{c} limit of QCD

Semiclassical limit of QCD 'tHooft 1974, Witten 1979
"Hadron masses, couplings, matrix elements scale in N_{c}
"Organization" of non-perturbative dynamics
Emerging dynamical spin-flavor symmetry $S U\left(2 N_{f}\right)$ Baryons in multiplets with masses $O\left(N_{c}\right)$, splittings $O\left(1 / N_{c}\right)$ Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993
$N \rightarrow N$ and $N \rightarrow \Delta$ transitions related by symmetry:
$\langle\Delta| \mathcal{O}|N\rangle=$ [symmetry factor] $\times\langle N| \mathcal{O}|N\rangle$
$1 / N_{c}$ expansion of hadronic matrix elements
Parametric expansion: Systematic, predictive, controlled accuracy
Applied to current matrix elements, hadronic amplitudes
Vector and axial currents: Fernando, Goity 2020

Theoretical methods: 1/Nc expansion

$1 / N_{c}$ expansion of $N \rightarrow N$ GPDs
Hierarchy of spin-flavor components of GPDs
Börnig et al. 1998; Goeke, Polyakov, Vanderhaeghen 2001

Extended to chiral-odd operators
Schweitzer, Weiss 2016

$1 / N_{c}$ expansion of $N \rightarrow \Delta$ transition GPDs

Leading structures, dynamical predictions from $N \rightarrow N$
Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000

Full $1 / N_{c}$ expansion including subleading corrections can be performed using group-theoretical methods
Goity, Jun-Young Kim, Weiss, planned

Chiral-odd operators
Kroll, Passek-Kumericki 2023

Theoretical methods: Other approaches

Lattice QCD: Partonic operators using quasi/pseudo PDF approach
Excited states using "distillation" methods developed for hadron spectroscopy
Long-term prospect of calculating $N \rightarrow B$ transition GPDs
\rightarrow Talks Richards, Zhao

Holography: Models of non-perturbative QCD based on gauge-string duality
Close connection spectrum \leftrightarrow structure
First applications to partonic structure and GPDs

Energy-momentum tensor form factors

EMT operator as 2nd x-moment of light-ray operator

EMT form factors describe distributions of momentum, angular momentum, forces in system
Ji 1996, Polyakov 2003, Lorce et al. 2013+
$N \rightarrow N$: Extensive studies, "mechanical properties"

$N \rightarrow \Delta$ transition EMT form factors

Transition matrix elements: Form factors, multipoles J-Y Kim 2022 + in progress

Transition angular momentum formulated as light-front density J-Y Kim, H-Y Won, Goity, Weiss, 2023
$J^{z}(N \rightarrow \Delta)=\int d^{2} b \mathbf{b} \times\langle\Delta| \mathbf{T}^{+T}|N\rangle$

Probes isovector quark angular momentum $u-d$

Energy-momentum tensor form factors

Lattice QCD	$J_{p \rightarrow p}^{S}$	$J_{\Delta^{+} \rightarrow \Delta^{+}}^{S}$	$J_{p \rightarrow p}^{V}$	$J_{p \rightarrow \Delta^{+}}^{V}$	$J_{\Delta^{+} \rightarrow \Delta^{+}}^{V}$
$[9] \mu^{2}=4 \mathrm{GeV}^{2}$	0.33^{*}	0.33	0.41^{*}	0.58	0.08
$[10] \mu^{2}=4 \mathrm{GeV}^{2}$	0.21^{*}	0.21	0.22^{*}	0.30	0.04
$[11] \mu^{2}=4 \mathrm{GeV}^{2}$	0.24^{*}	0.24	0.23^{*}	0.33	0.05
$[12] \mu^{2}=1 \mathrm{GeV}^{2}$	-	-	0.23^{*}	0.33	0.05
$[13] \mu^{2}=4 \mathrm{GeV}^{2}$	-	-	0.17^{*}	0.24	0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010.
[12] Bali 2019. [13] Alexandrou 2020

$1 / N_{c}$ expansion connects AM in $N \rightarrow \Delta$ and $N \rightarrow N$
Goeke, Vanderhaeghen, Polyakov 2000; Kim, Won, Goity, Weiss, 2023
$J^{V}(p \rightarrow p)=\frac{1}{\sqrt{2}} J^{V}\left(p \rightarrow \Delta^{+}\right)=5 J^{V}\left(\Delta^{+} \rightarrow \Delta^{+}\right)$

$$
V \equiv u-d
$$

$N \rightarrow \Delta$ transition AM estimated using lattice QCD results for $p \rightarrow p$

Measurements of $N \rightarrow \Delta$ transition AM could explain/constrain flavor asymmetry of proton AM J^{u-d}

Many interesting questions: Separation of spin and orbital AM in $N \rightarrow \Delta$ transition - dynamics?
Large-Nc light-front chiral quark-soliton model: J-Y Kim 2023

Processes: $N \rightarrow \pi N$ and Δ in DVCS

$e+p \rightarrow e^{\prime}+\gamma+\pi^{0} p, \pi^{+} n\left(\Delta^{+}\right.$resonance $)$
$e+n \rightarrow e^{\prime}+\gamma+\pi^{0} n, \pi^{-} p\left(\Delta^{0}\right.$ resonance $)$

Probes chiral-even GPDs
Detailed modeling: Semenov-Tian-Shansky, Vanderhaeghen 2023

Experiments

HERMES: Beam spin asymmetry $A_{L U}$, large exp. uncertainties

JLab12: First results from CLAS12 $\Delta^{+} \rightarrow$ Talk K. Joo

EIC: Far-forward Delta reconstruction?
Various channels, should be simulated
\rightarrow Discussion

Processes: $N \rightarrow \Delta$ in π, η production

$$
\begin{aligned}
& \left\langle H_{T}\right\rangle: u-d \text { leading in } 1 / N_{c} \\
& \left\langle\bar{E}_{T}\right\rangle: u+d \text { leading }
\end{aligned}
$$

Twist-2 mechanism: Chiral-even helicity-conserving GPDs + DA, L photon
Frankfurt, Pobylitsa, Polyakov, Strikman 1998

Large twist-3 mechanism: Chiral-odd helicity-flip
GPD + DA, T photon
Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+

Describes well JLab $6 \mathrm{GeV} N \rightarrow N$ data CLAS6 2017 Bedlinskiy et al. π^{0}, η
$1 / N_{c}$ expansion correctly predicts flavor structure Schweitzer, Weiss 2016; Kubarovsky 2019
$N \rightarrow \Delta$ transitions

Predictions for $\pi^{-} \Delta^{++}$final states using $1 / N_{c}$ Kroll, Passek-Kumericki 2023

CLAS12: Beam spin asymmetry $\pi^{-} \Delta^{++} \rightarrow$ Talk K. Joo

Distinguish chiral-odd/even GPDs through $N \rightarrow \Delta$?

Processes: $N \rightarrow \Lambda, \Sigma, \Sigma^{*}$ in K production

Same twist-3 mechanism with chiral-odd structures as π, η production

Symmetry relations for strange chiral-odd GPDs
$N \rightarrow \Lambda, \Sigma$ related to $N \rightarrow N$
by conventional $\mathrm{SU}(3)$ flavor symmetry
$N \rightarrow \Sigma^{*}$ related to $N \rightarrow N, \Lambda, \Sigma$
by $\mathrm{SU}(6)$ spin-flavor symmetry in large- N_{c} limit

Predictive power; quantitative modeling possible

JLab12
$p \rightarrow \Lambda, \Sigma, \Sigma^{*}$ in CLAS12 K production data,
to be analyzed \rightarrow Talk K. Joo

Processes: Vector meson production at small x

Diffractive vector meson production $\left(V=J / \psi, \phi, \rho^{0}\right)$ with $N \rightarrow X$ (low-mass) transitions

Probes quantum fluctuations of gluon density in nucleon:
Frankfurt, Strikman, Treleani, Weiss PRL 101:202003, 2008

$$
\omega_{g} \equiv \frac{\left\langle G^{2}\right\rangle-\langle G\rangle^{2}}{\langle G\rangle^{2}}=\left.\frac{d \sigma / d t\left(\gamma^{*} N \rightarrow V X\right)}{d \sigma / d t\left(\gamma^{*} N \rightarrow V N\right)}\right|_{t=0}
$$

Fluctuations formulated in context of collinear factorization and transition GPDs. Alt formulation in dipole model Schlichting, Schenke 2014; Mäntisaari, Schenke 2016

Discussed as part of diffraction at HERA and EIC: Inelastic diffraction

High rates at EIC; detection being simulated

Summary

- Factorization theorem for hard exclusive processes as "source" of new operators for studying hadronic transitions: well-defined, simple, new spin/charge quantum numbers
- $1 / N_{c}$ expansion relates $N \rightarrow N$ and $N \rightarrow \Delta$ transitions [or $8 \rightarrow 8$ and $8 \rightarrow 10$ for strange] through dynamical spin-flavor symmetry: systematic, predictive
- Energy-momentum tensor form factors and "mechanical properties" can be generalized to $N \rightarrow \Delta, N^{*}$ transitions
- $N \rightarrow \Delta$ transitions generally as large as $N \rightarrow N$ where allowed, similar rates
- First results on $N \rightarrow \Delta$ in DVCS and π, η production from JLab12
- Δ reconstruction with EIC far-forward detectors should be simulated. Different decay modes of same Δ activate different detectors - charged-neutral, neutral-neutral, charged-charged. Could be used for tests and calibration, besides physics interest.

Announcement: ECT* Workshop on Transition GPDs

ECT* - APCTP Joint Workshop:
Exploring resonance structure with transition GPDs
ECT* Trento, 21-25 August 2023
[Webpage]
Organizers:
Stefan Diehl (Justus Liebig Unversity Giessen, Germany)
Charlotte Van Hulse (University of Alcala, Madrid Region, Spain)
Vladimir Braun (University Regensburg, Germany)
Seung-il Nam, (Pukyong National University, Republic of Korea)
Kyungseon Joo (University of Connecticut, United States)
Christian Weiss (Jefferson Lab, United States)

Supplemental material

Processes: Forward Δ at EIC

EIC

Far-forward detection system
Charged hadrons: Forward spectrometer Neutral hadrons: Zero-Degree Calorimeter

Decay pion carries small fraction of Δ longit. momentum: $p_{L \pi} / p_{L \Delta} \approx M_{\pi} / m_{\Delta} \approx 1 / 9$

Forward Δ reconstruction at EIC?

Forward p detection (with rigidity $\gtrsim 1 / 2$ beam) and forward n detection have been simulated for $p \rightarrow p, n$ exclusive processes, are well understood

Forward π^{0} detection with ZDC has been explored in connection with u-channel processes [A. Jentsch, Wenliang Li et al.]

Forward $\pi^{ \pm}$detection with rigidity \ll beam might be possible with B0 tracker [A. Jentsch, private communication]

Would be very interesting to simulate Δ reconstruction at EIC!
Comparison of decay channels can serve as cross-check and detector calibration $\Delta^{+} \rightarrow \pi^{+} n$ or $\pi^{0} p . \Delta^{0} \rightarrow \pi^{0} n$ or $\pi^{-} p$

Processes: Forward Λ at EIC

Λ decays $\sim 1-10$ meters from IP, depending on ion beam energy
Vertex position unknown, wide range of possibilities
Simulations of Λ reconstruction ($p \pi^{-}, n \pi^{0}$) performed in context of K structure studies J. Arrington et al.,J.Phys.G 48 (2021) 7, 075106

Would be interesting to simulate Σ reconstruction, Σ^{*} resonance - "strange $\Delta^{"}$

