Transition GPDs

C. Weiss (Jefferson Lab), Towards improved hadron femtography with hard exclusive reactions, Jefferson Lab, 7-11 Aug 2023 [Webpage]

This presentation

Overview of concepts, methods, processes

Applications to JLab12+ and EIC

Much progress in theory

First results from JLab12 \rightarrow Talk K. Joo

Motivation

Structure \leftrightarrow excitations in QM systems

Transition GPDs

Factorization \rightarrow QCD operators

Transition matrix elements $N \rightarrow \pi N$, resonances

Chiral dynamics, $1/N_c$ expansion \leftarrow

Processes

$N ightarrow \Delta$ in DVCS	←
$N \rightarrow \Delta, N^*$ in π, η production	←
$N \rightarrow \Lambda, \Sigma$ in K, K^* production	
$[N \rightarrow X \text{ in vector meson production}]$	

Structure and excitations in QM systems

Internal structure and excitation spectrum are closely related aspects of QM systems

Example: Nuclear shell model Mean-field structure of ground state ↔ Single-particle excitation spectrum

Example: Collective motion Semiclassical structure ↔ Rotational excitation spectrum

Same applies to hadron structure in QCD!

Transition GPDs: Hard exclusive processes

Factorization

Asymptotic regime $Q^2, W^2 \gg \mu_{\rm had}^2, \, |\,t\,| \sim \mu_{\rm had}^2$

Production process communicates with target through QCD light-ray operators $\mathcal{O}(z) = \bar{\psi}(0) \dots \psi(z)_{z^2=0}$

Hadronic matrix elements $\langle H' | \mathcal{O}(z) | H \rangle \leftrightarrow \text{GPDs}$

Works for any transition with $m_{H'} - m_H \sim \mu_{\rm had}$

Physics interest in transitions $H \to H'$

Learn more about operator: Quantum numbers, spin-flavor components?

Learn about structure of excited states:

Use well-defined QCD operators from factorization theorem: Renormalization, scale dependence, universality \rightarrow LQCD, nonperturbative methods

Realize operators with quantum numbers not accessible with local vector/axial currents: Spin ≥ 2 — energy momentum tensor, gluon operators, quarks \leftrightarrow antiquarks C-parity

Transition GPDs: Resonances

Definition of resonance GPDs

Multihadron final state, e.g. πN

Analytic continuation in invariant mass $s_{\pi N}$: Pole at $s_{\pi N} = M_{\Delta}^2$, resonance structure defined at pole, residue factorizes

Rigorous definition of "resonance GPDs" using methods of S-matrix theory

Physical region: Resonant + non-resonant contributions, needs theory

Theoretical methods: Chiral dynamics

Near-threshold region $k_{\rm cm} \sim M_\pi$

Pion emission governed by chiral dynamics

Soft-pion theorems relate $N \to \pi N$ and $N \to N$ matrix elements: $\langle \pi N | \mathcal{O} | N \rangle \leftrightarrow \langle N | \mathcal{O}' | N \rangle, \quad \mathcal{O}' \sim [\mathcal{O}, J_5^{\mu}]$

Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

Corrections calculable in ChPT Kivel, Polyakov 2004

Systematic approach in near-threshold region Practically applicable in S-wave; limited by Δ resonance in P-wave $_{\rm Guidal\ et\ al\ 2003}$

Theoretical methods: 1/Nc expansion

S = I = 1/2, 3/2

Large- N_c limit of QCD

Semiclassical limit of QCD 'tHooft 1974, Witten 1979

Hadron masses, couplings, matrix elements scale in N_{c} "Organization" of non-perturbative dynamics

Emerging dynamical spin-flavor symmetry $SU(2N_f)$ Baryons in multiplets with masses $O(N_c)$, splittings $O(1/N_c)$ Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993

 $N \to N \text{ and } N \to \Delta \text{ transitions related by symmetry:}$ $\langle \Delta | \mathcal{O} | N \rangle = [\text{symmetry factor}] \times \langle N | \mathcal{O} | N \rangle$

$1/N_c$ expansion of hadronic matrix elements

Parametric expansion: Systematic, predictive, controlled accuracy

Applied to current matrix elements, hadronic amplitudes Vector and axial currents: Fernando, Goity 2020

Theoretical methods: 1/Nc expansion

$1/N_c$ expansion of $N \rightarrow N$ GPDs

Hierarchy of spin-flavor components of GPDs Börnig et al. 1998; Goeke, Polyakov, Vanderhaeghen 2001

Extended to chiral-odd operators Schweitzer, Weiss 2016

$1/N_c$ expansion of $N \rightarrow \Delta$ transition GPDs

chiral-even

chiral-odd

Leading structures, dynamical predictions from $N \rightarrow N$ Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000

Full $1/N_c$ expansion including subleading corrections can be performed using group-theoretical methods Goity, Jun-Young Kim, Weiss, planned

Chiral-odd operators Kroll, Passek-Kumericki 2023

Theoretical methods: Other approaches

Lattice QCD: Partonic operators using quasi/pseudo PDF approach Excited states using "distillation" methods developed for hadron spectroscopy Long-term prospect of calculating $N \rightarrow B$ transition GPDs \rightarrow Talks Richards, Zhao

Holography: Models of non-perturbative QCD based on gauge-string duality Close connection spectrum ↔ structure First applications to partonic structure and GPDs

 \rightarrow Talks Mamo, Zahed

Energy-momentum tensor form factors

EMT operator as 2nd x-moment of light-ray operator

EMT form factors describe distributions of momentum, angular momentum, forces in system Ji 1996, Polyakov 2003, Lorce et al. 2013+

 $N \rightarrow N$: Extensive studies, "mechanical properties"

$N \rightarrow \Delta$ transition EMT form factors

Transition angular momentum formulated as light-front density J-Y Kim, H-Y Won, Goity, Weiss, 2023

$$J^{z}(N \to \Delta) = \int d^{2}b \mathbf{b} \times \langle \Delta | \mathbf{T}^{+T} | N \rangle$$

Probes isovector quark angular momentum u - d

Energy-momentum tensor form factors

Lattice QCD	$J^{S}_{p \to p}$	$J^S_{\Delta^+\to\Delta^+}$	$J^V_{p \to p}$	$J^V_{p o \Delta^+}$	$J^V_{\Delta^+\to\Delta^+}$
$[9] \mu^2 = 4 \mathrm{GeV}^2$	0.33*	0.33	0.41*	0.58	0.08
$[10] \mu^2 = 4 \mathrm{GeV}^2$	0.21*	0.21	0.22*	0.30	0.04
$[11] \mu^2 = 4 \mathrm{GeV}^2$	0.24*	0.24	0.23*	0.33	0.05
$[12] \mu^2 = 1 \mathrm{GeV}^2$	_	_	0.23*	0.33	0.05
$[13] \mu^2 = 4 \mathrm{GeV}^2$	_	_	0.17*	0.24	0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019. [13] Alexandrou 2020

 $1/N_c$ expansion connects AM in $N\to\Delta$ and $N\to N$ Goeke, Vanderhaeghen, Polyakov 2000; Kim, Won, Goity, Weiss, 2023

$$J^{V}(p \to p) = \frac{1}{\sqrt{2}} J^{V}(p \to \Delta^{+}) = 5J^{V}(\Delta^{+} \to \Delta^{+})$$
$$V \equiv u - d$$

 $N \rightarrow \Delta$ transition AM estimated using lattice QCD results for $p \rightarrow p$

Measurements of $N \to \Delta$ transition AM could explain/constrain flavor asymmetry of proton AM J^{u-d}

Many interesting questions: Separation of spin and orbital AM in $N \rightarrow \Delta$ transition — dynamics? Large-Nc light-front chiral quark-soliton model: J-Y Kim 2023

Processes: $N \rightarrow \pi N$ and Δ in **DVCS**

$$e + p \rightarrow e' + \gamma + \pi^0 p, \pi^+ n \quad (\Delta^+ \text{ resonance})$$

 $e + n \rightarrow e' + \gamma + \pi^0 n, \pi^- p \quad (\Delta^0 \text{ resonance})$

Probes chiral-even GPDs Detailed modeling: Semenov-Tian-Shansky, Vanderhaeghen 2023

Experiments

Processes: $N \rightarrow \Delta$ in π, η production

$$L,T \xrightarrow{\text{hard}} \pi^{0}, \eta$$

$$Q^{2} \xrightarrow{\text{flip}} + -$$

$$p \xrightarrow{\text{GPD}} p, \Delta^{0}$$

 $\langle H_T \rangle$: u - d leading in $1/N_c$ $\langle \bar{E}_T \rangle$: u + d leading

Twist-2 mechanism: Chiral-even helicity-conserving GPDs + DA, L photon Frankfurt, Pobylitsa, Polyakov, Strikman 1998

Large twist-3 mechanism: Chiral-odd helicity-flip GPD + DA, T photon Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+

Describes well JLab 6 GeV $N \rightarrow N$ data CLAS6 2017 Bedlinskiy et al. π^0, η

 $1/N_c$ expansion correctly predicts flavor structure Schweitzer, Weiss 2016; Kubarovsky 2019

$N \rightarrow \Delta$ transitions

Predictions for $\pi^- \Delta^{++}$ final states using $1/N_c$ Kroll, Passek-Kumericki 2023

CLAS12: Beam spin asymmetry $\pi^- \Delta^{++} \rightarrow \text{Talk K. Joo}$

Distinguish chiral-odd/even GPDs through $N \rightarrow \Delta$?

Processes: $N \rightarrow \Lambda, \Sigma, \Sigma^*$ in *K* production

Same twist-3 mechanism with chiral-odd structures as π , η production

Symmetry relations for strange chiral-odd GPDs

 $N \rightarrow \Lambda, \Sigma$ related to $N \rightarrow N$ by conventional SU(3) flavor symmetry

 $N \rightarrow \Sigma^*$ related to $N \rightarrow N, \Lambda, \Sigma$ by SU(6) spin-flavor symmetry in large- N_c limit

Predictive power; quantitative modeling possible

JLab12

 $p \rightarrow \Lambda, \Sigma, \Sigma^*$ in CLAS12 *K* production data, to be analyzed $\rightarrow \text{Talk K. Joo}$

Processes: Vector meson production at small *x*

Diffractive vector meson production ($V = J/\psi, \phi, \rho^0$) with $N \rightarrow X$ (low-mass) transitions

Probes quantum fluctuations of gluon density in nucleon: Frankfurt, Strikman, Treleani, Weiss PRL 101:202003, 2008

$$\omega_g \equiv \frac{\langle G^2 \rangle - \langle G \rangle^2}{\langle G \rangle^2} = \frac{d\sigma/dt \; (\gamma^* N \to VX)}{d\sigma/dt \; (\gamma^* N \to VN)} \bigg|_{t=0}$$

Fluctuations formulated in context of collinear factorization and transition GPDs. Alt formulation in dipole model Schlichting, Schenke 2014; Mäntisaari, Schenke 2016

Discussed as part of diffraction at HERA and EIC: Inelastic diffraction

High rates at EIC; detection being simulated

Summary

- Factorization theorem for hard exclusive processes as "source" of new operators for studying hadronic transitions: well-defined, simple, new spin/charge quantum numbers
- $1/N_c$ expansion relates $N \rightarrow N$ and $N \rightarrow \Delta$ transitions [or $8 \rightarrow 8$ and $8 \rightarrow 10$ for strange] through dynamical spin-flavor symmetry: systematic, predictive
- Energy-momentum tensor form factors and "mechanical properties" can be generalized to $N \to \Delta, N^*$ transitions
- $N \rightarrow \Delta$ transitions generally as large as $N \rightarrow N$ where allowed, similar rates
- First results on $N \to \Delta$ in DVCS and π, η production from JLab12 $\rightarrow \text{Talk K. Joo}$
- Δ reconstruction with EIC far-forward detectors should be simulated. Different decay modes of same Δ activate different detectors — charged-neutral, neutral-neutral, charged-charged. Could be used for tests and calibration, besides physics interest.

Announcement: ECT* Workshop on Transition GPDs 16

ECT* - APCTP Joint Workshop: Exploring resonance structure with transition GPDs

ECT* Trento, 21-25 August 2023 [Webpage]

Organizers:

Stefan Diehl (Justus Liebig Unversity Giessen, Germany) Charlotte Van Hulse (University of Alcala, Madrid Region, Spain) Vladimir Braun (University Regensburg, Germany) Seung-il Nam, (Pukyong National University, Republic of Korea) Kyungseon Joo (University of Connecticut, United States) Christian Weiss (Jefferson Lab, United States)

Supplemental material

EIC

 $\rightarrow \text{Talk Jentsch}$

Far-forward detection system Charged hadrons: Forward spectrometer Neutral hadrons: Zero-Degree Calorimeter

Decay pion carries small fraction of Δ longit. momentum: $p_{L\pi}/p_{L\Delta} \approx M_{\pi}/m_{\Delta} \approx 1/9$

Forward Δ reconstruction at EIC?

Forward p detection (with rigidity \gtrsim 1/2 beam) and forward n detection have been simulated for $p \rightarrow p, n$ exclusive processes, are well understood

Forward π^0 detection with ZDC has been explored in connection with u-channel processes [A. Jentsch, Wenliang Li et al.]

Forward π^{\pm} detection with rigidity \ll beam might be possible with B0 tracker [A. Jentsch, private communication]

Would be very interesting to simulate Δ reconstruction at EIC! Comparison of decay channels can serve as cross-check and detector calibration $\Delta^+ \rightarrow \pi^+ n$ or $\pi^0 p$. $\Delta^0 \rightarrow \pi^0 n$ or $\pi^- p$

Processes: Forward Λ at EIC

 $\Lambda \, {\rm decays} \, \sim 1 - 10 \, {\rm meters}$ from IP, depending on ion beam energy

Vertex position unknown, wide range of possibilities

Simulations of Λ reconstruction $(p\pi^-, n\pi^0)$ performed in context of K structure studies J. Arrington et al., J.Phys.G 48 (2021) 7, 075106

Would be interesting to simulate Σ reconstruction, Σ^* resonance — "strange Δ "