Generalized Parton CENTER for CLEAR FEMTOGRAPH Distributions through Universal Moment Parameterization (GUMP): Towards global analysis at non zero skewness

M Gabriel Santiago

With Yuxun Guo, Xiangdong Ji, Kyle Shiells and Jinghong Yang JHEP 05 (2023) 150, <u>arXiv:2302.07279</u>

Outline

GPD Review

- GUMP Program
 - Conformal moment parameterization
- First Step Towards Global Analysis: u and d quarks
 - Simplified GPD moment ansatz
 - Experimental and lattice input
- Non-zero Skewness Global Fit
- GPD Extraction
 - Ambiguity in the ERBL/DA-like region
 - D-terms vs DA-like terms
- Moving Forward
- Conclusions

GPDs

3

 GPDs generalize the well known PDFs to encode full 3 dimensional information on the quarks and gluons within hadrons

 $f(x) \to F(x,\xi,t)$

 $x \sim \text{parton momentum fraction}, \ \xi \sim \text{longitudinal momentum transfer},$

 $t=\Delta^2\sim {\rm momentum}$ transfer squared

GPDs

4

 Polarization of the hadron and its parton constituents connects GPDs to the distribution of angular momentum within hadrons (X. Ji 1997)

• Ji sum rule
$$J_i = \frac{1}{2} \int_0^1 \mathrm{d}x \, x \left[H_i(x,\xi) + E_i(x,\xi) \right]$$

 Related via a Fourier transform to the impact parameter distribution of partons (M. Burkardt 2003)

$$ho(x,r_{\perp}) = \int rac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot r_{\perp}} H(x,0,\Delta_{\perp}^2)$$

Related to bulk properties of hadron states encoded in form factors

$$\int \mathrm{d}x \, x H_i(x,\xi,t) = A_i(t) + (2\xi)^2 C_i(t), \quad \int \mathrm{d}x \, x E_i(x,\xi,t) = B_i(t) - (2\xi)^2 C_i(t)$$

GUMP program: Moment Parameterization

Parameterize GPDs by directly parameterizing their conformal moments $F_i(x,\xi,t) = \sum_{j=0}^{\infty} (-1)^j p_{i,j}(x,\xi) \mathcal{F}_{i,j}(\xi,t)$ (D. Mueller and A. Schafer 2006)

Expansion based on eigenfunctions of evolution – Gegenbauer polynomials

$$(-1)^{j} p_{j}(x,\xi) = \xi^{-j-1} \frac{2^{j} \Gamma(\frac{5}{2}+j)}{\Gamma(\frac{3}{2}) \Gamma(j+3)} \left[1 - \left(\frac{x}{\xi}\right)^{2} \right] C_{j}^{3/2} \left(\frac{x}{\xi}\right)$$

conformal wave function

5

$$\int_{-1}^{1} \frac{\mathrm{d}x'}{|\xi|} \mathcal{K}\left(\frac{x}{\xi}, \frac{x'}{\xi}\right) C_{j}^{3/2}\left(\frac{x}{\xi}\right) = \gamma_{j} C_{j}^{3/2}\left(\frac{x}{\xi}\right)$$

GPD evolution kernel

GUMP program: Moment Parameterization

- Conformal moment parameterization has nice features for fitting GPDs
- Simple evolution implementation conformal moments are multiplicatively renormalized at LO
 - Follows from using eigenfunctions of evolution kernel
- Polynomiality condition (X. Ji 1998) automatically enforced on conformal moments

$$F_{i,n}(\xi,t) = \int_{-1}^{1} \mathrm{d}x \, x^{n-1} F(x,\xi,t) = \sum_{k=0, \text{ even}}^{n} \xi^{k} F_{i,n,k}(t)$$
$$F_{i,j}(\xi,t) = \sum_{k=0, \text{ even}}^{j+1} \xi^{k} F_{i,j,k}(t)$$

First Step Toward Global GPD Analysis

 Apply in GUMP program for global analysis of u and d quark GPDs at nonzero skewness with LO scale evolution

Parameterize each GPD moment with five parameters

7

$$\begin{split} F_{i,j,0} &= N_i B(j+1-\alpha_i,1+\beta_i) \frac{j+1-\alpha_i}{j+1-\alpha_i(t)} \beta(t) & \beta(t) = e^{-b|t|} \\ & \uparrow \\ & \text{Euler Beta} \\ & \text{Function} & \text{Regge trajectory} & \alpha(t) = \alpha + \alpha' t \end{split}$$

Take each moment to be a power series in skewness – polynomiality condition

 $F_{i,j} = F_{i,j,0}(t) + \xi^2 R_{\xi^2} F_{i,j,0}(t) + \xi^4 R_{\xi^4} F_{i,j,0}(t) \dots$

First Step Toward Global GPD Analysis

- The number of parameters needed for modelling all the species of GPD grows very quickly
- We impose extra constraints for simplicity

GPDs species and flavors	Fully parameterized	GPDs linked to	Proportional constants
H_{u_V} and \widetilde{H}_{u_V}	~	-	-
E_{u_V} and \widetilde{E}_{u_V}	~	-	-
H_{d_V} and \widetilde{H}_{d_V}	~	-	-
E_{d_V} and \widetilde{E}_{d_V}	×	E_{u_V} and \widetilde{E}_{u_V}	$R^{E/\widetilde{E}}_{d_V}$
$H_{ar{u}}$ and $\widetilde{H}_{ar{u}}$	~	-	-
$E_{ar{u}}$ and $\widetilde{E}_{ar{u}}$	×	$H_{ar{u}}$ and $\widetilde{H}_{ar{u}}$	$R^{E/\widetilde{E}}_{ m sea}$
$H_{\bar{d}} \mbox{ and } \widetilde{H}_{\bar{d}}$	~	-	-
$E_{ar{d}} ext{ and } \widetilde{E}_{ar{d}}$	×	$H_{\bar{d}} \mbox{ and } \widetilde{H}_{\bar{d}}$	$R^{E/\widetilde{E}}_{ m sea}$
H_g and \widetilde{H}_g	~	-	-
E_g and \widetilde{E}_g	×	H_g and \widetilde{H}_g	$R^{E/\widetilde{E}}_{ m sea}$

Non-zero Skewness Global Fit

Even with constraints, lots of parameters!

- Very high dimensional space to navigate for best fit
- Very computationally demanding to do error propagation
- We employ a sequential fit, starting with forward (PDF, t-dependent PDF) constraints for each GPD species then apply the off-forward constraints from DVCS data

Semi-Forward Inputs

- JAM (2022) PDF global analysis results
 - Full global analysis should in principle fit to PDF sensitive data directly, but here
 we fit to JAM results
 - Limited number of points taken to avoid need for more sophisticated forward limit
- Globally extracted electromagnetic form factors (Z. Ye et al 2018)
- Lattice GPDs (Alexandrou et al 2020) and form factors (Alexandrou et al 2022)
 - x, t -dependent GPDs (semi-forward limit)

Off-Forward Inputs

- DVCS measurements from JLab (CLAS 2019 & 2021, Hall A 2018 & 2022) and HERA (H1 2010)
- Only using t-dependent cross sections due to practical limitations
- Far more points from JLab data than from HERA from φ -dependence and both UU and LU polarization channels
- Off-forward lattice GPDs not used in fitting, but can supply crucial constraints for future work!

Non-zero Skewness Global Fit

• Total χ^2 /dof is approximately 1.4

- Some agreement with both JLAB and H1 data
- Gluon GPDs not well constrained at non-zero skewness
 - Only contribute to DVCS through evolution at LO
- Error propagation is not yet implemented
 - Very computationally expensive with so many parameters!

Non-zero Skewness Global Fit

- CFFs from fit are mostly consistent with local extraction from JLAB Hall A data as well as KM15 extractions
- Some inconsistencies can be expected from degeneracies in CFF contribution to cross sections need more polarization configurations!

14

Extracted GPDs

- GPDs are mostly constrained on the $\xi = x$ line and in the DGLAP region $|\xi| < |x|$
- ERBL region shows large oscillations which are characteristic of the Gegenbauer polynomials used in the moment expansion

GPDs H_q at $\xi = 1/3$ and -t = 0.69 GeV²

Ambiguity in ERBL Region

 We can add terms in the moment expansion which only contribute to the ERBL region

$$(-1)^{j} p_{j}(x,\xi) = \xi^{-j-1} \frac{2^{j} \Gamma(\frac{5}{2}+j)}{\Gamma(\frac{3}{2}) \Gamma(j+3)} \left[1 - \left(\frac{x}{\xi}\right)^{2} \right] C_{j}^{3/2} \left(\frac{x}{\xi}\right) , \quad |x| < |\xi|$$

This suggests an interpretation of the GPDs in terms of quark and antiquark pieces as well as a ERBL region distribution amplitude (DA) piece

$$F_q(x,\xi,t) = F_{\hat{q}}(x,\xi,t) \mp F_{\bar{q}}(-x,\xi,t) + F_{q\bar{q}}$$

quark antiquark DA
 $x > -\xi$ $-x > -\xi$ $\xi > x > -\xi$

Connection to D-term

- These DA terms don't have a large affect on CFFs, but they do contain information related to the various D-terms in QCD, ex.
 - Gravitational form factor C/D

16

$$\int dx \, x H_q(x,\xi,t) = A_q(t) + (2\xi)^2 C_q(t)$$

Dispersion relation subtraction term

$$F(\xi, t, Q^2) = rac{1}{\pi} \int_{0}^{1} \mathrm{d}\xi' \left(rac{1}{\xi - \xi'} \mp rac{1}{\xi + \xi'}
ight) \mathrm{Im} \left[F(\xi' - i0, t, Q^2)
ight] + \mathcal{C}(t, Q^2)$$

By constraining the DA terms with further experimental data and lattice calculations, we can access the mechanical properties of hadrons contained in these D-terms!

Constraining DA Terms

- Adding in lattice GPD calculations can give us constrains directly in the **ERBL** region
- Adding just a few terms to the moment expansion can remove the unphysical oscillations

Moving Forward: Adding in Gluons!

- DVCS at LO is only sensitive to gluon GPDs through scale evolution
- Using Deeply Virtual Meson Production (DVMP) gives a direct probe of gluons at LO

- Light vector mesons have similar sensitivity to quarks and gluons
 - KM framework applied to produce simultaneous fits of DVCS and DVMP for ρ^0 meson production with data from HERA (see Marija's talk on Wednesday)
- Add heavy vector meson to obtain better constraints on gluon GPDs use J/ψ production!

Deeply Virtual J/ψ Production

19

- Charm quark contribution for nucleon target is negligible direct probe of gluons
- Complementary with GUMP work on quark GPDs, but mostly sensitive to small-x_B region whereas JLab data combined with HERA gives better constraint at moderate x_B
- Caveat: mass of the J/ψ is too large for usual collinear factorization

$$M_{J/\psi}^2/Q_{
m max\ bin}^2 \approx 9/20 \rightarrow {
m corrections\ of\ order}\,1/2$$

 Need to take heavy mass corrections into account – non-relativistic (NR) QCD!

Non-relativistic model approach

• Encoding the J/ψ formation into NR matrix elements

$$\Gamma[J/\psi \to l^+ l^-] \approx \frac{2e_c^2 \pi \alpha_{EM}^2}{3m_c^2} \langle \mathcal{O}_1 \rangle_{J/\psi} \left(1 - \frac{8\alpha_s}{3\pi}\right)^2$$

 Maintain the form of the factorization theorem for the process – still sensitive to leading twist GPDs (D. Y. Ivanov et al 2004)

$$\mathcal{M} = \left(rac{\langle \mathcal{O}_1
angle_V}{m_c}
ight)^{1/2} \sum_i F_i(x,\xi,t) \otimes_x H_i(x,\xi)$$

- Systematically improvable with relativistic, higher twist, and NLO QCD corrections
- Bridge between electroproduction and photoproduction regimes

Implementing NR J/ψ Production in GUMP

- LO framework used for previous global fit does not match data in HERA kinematics
- NLO evolution is known in moment space (Mueller et al 2013)
- NLO NR matrix element for J/ψ formation is known (D. Y. Ivanov et al 2004)
- Finite mass corrections for hard scattering are only known in momentum fraction space
 - Mass corrections make the convolutions for converting to conformal moment space much more complicated
- Adaptive numerical complex integral to construct GPD from moments is computationally expensive

Implementing NR J/ψ Production in GUMP

Implemented NLO evolution

- Corrections are large enough to fix scaling problems from LO!
- Switching over to a fixed order integral evaluation allows significant reduction in computation time with < 1% extra numerical error</p>
 - Terms in the integral can now be memorized and only calculated a few times (as in Gepard)
- Conversion of NLO finite mass hard scattering terms to moment space is on going

Future Improvements/Additions

• Implement J/ψ electroproduction fits with NLO

- Add threshold J/ψ production potentially constrain D-term/DA-terms
- Add quark flavors and implement ρ^0 and ϕ electroproduction
- Full simultaneous global analysis with DVCS and DVMP contributions
- Implement t-integrated cross sections speed up for NLO could make tintegrated cross sections practical

Conclusions

- Global fit combining experimental data and lattice calculations to constrain GPDs at non-zero skewness
- Developing the GUMP program to include gluon GPDs in global analysis through J/ψ production data
- Implementing NLO corrections
- Several directions for future improvements available

Best Fit χ^2 Breakdown

Sub-fits	χ^2	$N_{ m data}$	$\chi^2_ u \equiv \chi^2/ u$
Semi-forward			
$t \mathrm{PDF}~H$	281.7	217	1.41
$t \mathrm{PDF}~E$	59.7	50	1.36
$t \mathrm{PDF}~\widetilde{H}$	159.3	206	0.84
$t \mathrm{PDF}~\widetilde{E}$	63.8	58	1.23
Off-forward			
JLab DVCS	1413.7	926	~ 1.53
H1 DVCS	19.7	24	~ 0.82
Off-forward total	1433	950	1.53
Total	2042	1481	1.40

Vector GPDs H and E		Axial-vector GPDs \widetilde{H} and \widetilde{E}		
Parameter	Value (uncertainty)	Parameter	Value (uncertainty)	
$N_{u_V}^H$	4.923(89)	$N_{u_V}^{\widetilde{H}}$	4.833(429)	
$\alpha^{H}_{u_{V}}$	0.216(7)	$\alpha_{u_V}^{\widetilde{H}}$	-0.264 (34)	
$\beta_{u_V}^H$	3.229(23)	$\beta_{u_V}^{\tilde{H}}$	3.186 (122)	
$\alpha_{u_V}^{\prime H}$	2.347(51)	$\alpha_{u_V}^{\prime \widetilde{H}}$	2.182(175)	
$N_{\bar{u}}^{H}$	0.163(8)	$N_{ar{u}}^{\dot{\widetilde{H}}}$	0.070(33)	
$lpha_{ar{u}}^H$	1.136(10)	$lpha_{ar{u}}^{\widetilde{H}}$	0.538(112)	
$eta_{ar{u}}^H$	6.894(207)	$eta_{ar{u}}^{\widetilde{H}}$	4.229 (1320)	
$N_{d_V}^H$	3.359(170)	$N_{d_V}^{\widetilde{H}}$	-0.664 (170)	
$\alpha^{H}_{d_{V}}$	0.184 (18)	$\alpha_{d_V}^{\widetilde{H}}$	0.248(76)	
$\beta_{d_V}^H$	4.418 (77)	$\beta_{d_V}^{\widetilde{H}}$	3.572(477)	
$\alpha_{d_V}^{\prime H}$	3.482(171)	$\alpha_{d_V}^{\prime \tilde{H}}$	0.542(103)	
$N_{\bar{d}}^H$	0.249(12)	$N_{\bar{d}}^{\tilde{H}}$	-0.086 (42)	
$\alpha_{\bar{d}}^{H}$	1.052(10)	$lpha_{ar{d}}^{\widetilde{H}}$	0.495~(137)	
$\beta^{H}_{\bar{d}}$	6.554(216)	$\beta_{\bar{d}}^{\tilde{H}}$	2.554(897)	
N_q^H	2.864(108)	$N_q^{\widetilde{H}}$	0.243(304)	
α_q^H	1.052(8)	$\alpha_g^{\tilde{H}}$	0.631 (330)	
β_q^H	7.413(165)	$\beta_{g}^{\widetilde{H}}$	2.717(2865)	
$N_{u_V}^E$	0.181 (38)	$N_{u_V}^{\widetilde{E}}$	7.993(3480)	
$\alpha^E_{u_V}$	0.907(17)	$\alpha_{u_V}^{\widetilde{E}}$	0.800 (116)	
$\beta_{u_V}^E$	1.102(245)	$\beta_{u_V}^{\widetilde{E}}$	6.415(1577)	
$\alpha_{u_V}^{\prime E}$	0.461(86)	$\alpha_{u_V}^{\prime \tilde{E}}$	2.076 (933)	
$N_{d_V}^E$	-0.223 (47)	$N_{d_V}^{\dot{\widetilde{E}}}$	-2.407(1239)	
$R^E_{\rm sea}$	0.768(169)	$R_{ m sea}^{\widetilde{E}}$	38 (8)	
$R_{u,2}^H$	0.229(0.032)	$R_{u,2}^{\widetilde{H}}$	0.246(81)	
$R_{d.2}^H$	-2.639(202)	$R_{d.2}^{\widetilde{H}}$	1.656 (375)	
$R_{u.2}^{E}$	0.799(285)	$R_{u.2}^{\widetilde{E}}$	2.684(171)	
$R^E_{d,2}$	3.404 (1157)	$R_{d.2}^{\widetilde{E}}$	38 (2)	
b_{sea}^H	3.448(133)	$b_{ m sea}^{\widetilde{H}}$	9.852 (1330)	

Best Fit Parameters

27

August 8, 2023