DVCS and Electron Ion Collider

Igor Korover

The Electron Microscopes

SLAC, HERA, JLab, EIC

Proton Viewed in High Energy Electron Scattering: 1 Longitudinal Dimension

$$x_B = \frac{Q^2}{2 \cdot m_p \cdot v}$$

 Viewed from boosted frame, length contracted by

$$\gamma_{Breit} = \sqrt{1 + \frac{Q^2}{4M^2}}$$

- Internal motion of the nucleon's constituents is slowed down by time dilation – the <u>instantaneous</u> charge distribution of the nucleon is seen.
- In boosted frame x_B is understood as the <u>longitudinal momentum fraction</u> *valence* quarks: 0.1 < x_B < 1 *sea* quarks: x_B < 0.1
 L Biorken, SLAC-PUB-0571

J. Bjorken, SLAC-PUB-0571 March 1969

Quark Structure of Nucleon from High-Energy Lepton Scattering

e-p cross section $\approx \sigma_{Mott} \cdot F_2(x, Q^2)$

- Snap shots of the charged structure of the proton taken in the boosted frame
- 1/Q spatial resolution
- QCD prescribes evolution with Q² which connects quarks and gluons

Proton Tomography: 2 New Dimensions Transverse to Longitudinal Momentum

Direction of longitudinal momentum normal to plane of slide

Structure mapped in terms of \mathbf{b}_{T} = transverse position \mathbf{k}_{T} = transverse momentum

Goal: Unprecedented 21st Century Imaging of Hadronic Matter

Valence Quarks: JLab 12 GeV Sea Quarks and Gluons: EIC

3D Partonic Picture

Theorists have developed a powerful formalism for studying the 3D partonic picture of the nucleon and the nucleus. It is encoded in **Generalized Parton Distributions** and **Transverse Momentum Dependent Distributions**

Generalized Parton Distributions

<u>EM structure</u> Form factors, <u>transverse</u> charge & current distributions

> Nobel prize 1961-Hofstadter

Quark-gluon structure longitudinal momentum & helicity distributions

Nobel prize 1990 -Friedman, Kendall, Taylor

A world in a Function: Generalized Parton Distributions (GPDs)

Nucleon Spin

$$J_q = \frac{1}{2}\Delta\Sigma + L_q = \frac{1}{2}[A_{q,g}(0) + B_{q,g}(0)]$$

$$\int_{-1}^{1} dxx [H(x,\xi,\Delta^2) + E(x,\xi,\Delta^2)] = A(\Delta^2) + B(\Delta^2)$$

• 3D Tomography

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H_q(x, -\mathbf{\Delta}_{\perp}^{-2}) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

- Origin of Visible Mass
- Nucleon Energy-Momentum Tensor (EMT)

$$M_2^q(t) + \frac{4}{5}d_1(t)\xi^2 = \frac{1}{2}\int_{-1}^1 dx x H^q(x,\xi,t)$$

X. Ji, Phys. Rev. Lett. 74, 1071 (1995)

X. Ji, Phys. Rev. Lett. 78, 610 (1997)

R. G. Milner and R. Ent, Visualizing the Proton (2022)

Deeply Virtual Compton Scattering (DVCS)

Deeply Virtual Compton Scattering (DVCS)

Amplitude is given by four GPDs:

 $i\mathcal{M} = -i\sum_{q} (|e|Q_{q})^{2} \epsilon_{\mu}^{*} \epsilon_{\nu} \left\{ \begin{array}{c} \text{GPDs depend on 3 kinematic variables, e.g. } (x, \xi, t), \\ \text{that describe the internal nucleon dynamics.} \end{array} \right. \\ \left(p_{1}^{\mu} p_{2}^{\nu} + p_{1}^{\nu} p_{2}^{\mu} - g_{\perp}^{\mu\nu} \right) \int_{-1}^{1} dx \left[\frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right] \times \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \bar{u}(p')\gamma^{+}u(p) + \frac{E^{q}(x,\xi,t)}{\bar{u}(p')i\sigma^{+\alpha}} \frac{\Delta_{\alpha}}{2m_{N}}u(p) \right] \\ \left. + i\epsilon^{\mu\nu+-} \int_{-1}^{1} dx \left[\frac{1}{x + \xi - i\epsilon} - \frac{1}{x - \xi + i\epsilon} \right] \times \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \bar{u}(p')\gamma^{+}\gamma_{5}u(p) + \tilde{E}^{q}(x,\xi,t) \bar{u}(p')\gamma_{5} \frac{\Delta^{+}}{2m_{N}}u(p) \right] \right\}$

Deeply Virtual Compton Scattering

$$e + p \rightarrow e' + p' + \gamma$$

Simple reaction... but:

- Low cross-section
- Large non-DVCS background
- Exclusivity requirement
- 4-dimentional extraction required
- ➔ Ideally suited for a highluminosity, high-resolution, large acceptance experimental setups.

Jefferson Lab

PhD Thesis, MIT

PHYSICAL REVIEW C 92, 055202 (2015)

PHYSICAL REVIEW C 92, 055202 (2015)

DVCS phase space

J. High Energ. Phys. 2013, 93 (2013)

Polarized ep (eA) collider located at Brookhaven National Lab

DOE project, set to revolutionize our understanding of QCD

> p: 40 – 275 GeV e: 5 – 18 GeV

Data taking starting 2031/32

Origin of Mass

EIC Core Science

Pseudo data: no detector simulation

J. High Energ. Phys. 2013, 93 (2013)

Angular distributions for DVCS

22

Far Forward Detectors

Three Detection Systems

Simulation tool:

MILOU (3D) - generator <u>https://arxiv.org/pdf/hep-ph/0411389v1.pdf</u>

3D - lookup tables (Q², x_B, t)

(interplay between all three variables)

KM – implemented in GeParD

GK – implemented in PARTONS

(Nucl.Phys.B794:244-323,2008)

(arXiv:1512.06174)

Improved generator (EpIC) Eur. Phys. J. C 82, 819 (2022)

https://indico.cern.ch/event/1072533/contributions/4831030/a ttachments/2437404/4176605/DIS_2022.pdf Presentation by Kemal Tezgin

Weighted DVCS Phase Space @ ePi

Projected cross-sections

 $\mathcal{L} = 10 \text{ fb}^{-1}$

ECCE Simulation

- ▲ e+p 18+275 GeV
- e+p 10+100 GeV
- e+p 5+41 GeV

5x41 GeV²

0.01

0.001

π^0 Background $e + p \rightarrow e' + p' + \pi^0(\gamma \mathbf{x})$ $\gamma(q_1)$ k' $\gamma(q_2)$ k $\pi^0(q')$ $\gamma^*(q)$ DA $x-\xi$ $x + \xi$ p'pt

 π^0 contamination at EIC kinematics: Significant at low-energy and high pseudo-rapidity

Normalized to $\mathcal{L} = 10 f b^{-1}$

 $[\]begin{array}{c|c} & & & \\$

Photon detection

Energy Resolution
Angular Resolution
Acceptance

Endcap Angular Resolution: ~ 0.1 [deg]

(not including vertex uncertainties etc.)

Pion reconstruction including detector resolution

5x41

Summary

• EIC will provide a wide phase space for DVCS study.

Probe low x-Bjorken sector

• High precision data is expected over the wide kinematical range.

Crucial for multidimensional analysis

- Significant improvement in GPD H and sensitivity to GPD E
- Mapping transverse parton distribution

Thank you!