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What is meant by Far-Forward?
Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; 

and far beyond in far-forward/far-
backward detector regions
• Rapidity is related to the polar 

angle → 0 < h < 4 equates to 
2.1° < 𝜃 < 90°

𝜂 = −𝑙𝑛 𝑡𝑎𝑛 𝜃/2
pseudorapidity
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What is meant by Far-Forward?
Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; 

and far beyond in far-forward/far-
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angle → 0 < h < 4 equates to 
2.1° < 𝜃 < 90°
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Far-forward here means 𝜽 < 2.1∘
(~37 mrad)
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What is meant by Far-Forward?
Overall detector requirements:
• Large rapidity (-4 < h < 4) coverage; 

and far beyond in far-forward/far-
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𝜂 = −𝑙𝑛 𝑡𝑎𝑛 𝜃/2
pseudorapidity

Need detectors here!!

EIC

2.4 miles in 
circumference!

IP6

IP8
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spectator tagging in light 
nuclei

Quasi-elastic electron 
scattering

u-channel backward 
exclusive electroproduction

…and MANY more!

(some) Far-Forward Processes at the EIC 

Sullivan process
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(some) Far-Forward Physics at the EIC 
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ØPhysics channels require tagging of charged hadrons (protons, pions) 
or neutral particles (neutrons, photons) at very-forward rapidities
(𝜼 > 4.5).

ØDifferent final states → tailored detector subsystems.
ØVarious beams and energies (h: 41, 100-275 GeV, e: 5-18 GeV; e+p, 

e+d, e+Au, etc.).
ØPlacing and operation of far-forward detectors uniquely challenging 

due to integration with accelerator.
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B1apf

B2apf

B0pf combined function magnet

Focusing quadrupoles

The        Far-Forward Detectors
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B1apf

B2apf

B0pf combined function magnet

ZDC

RP

OMD

B0 detector

The        Far-Forward Detectors

Detector Acceptance

Zero-Degree Calorimeter (ZDC) 𝜽 < 5.5 mrad (𝜂 > 6)

Roman Pots (2 stations) 0.0* < 𝜽 < 5.0 mrad (𝜂 > 6)

Off-Momentum Detectors (2 
stations) 0.0 < 𝜽 < 5.0 mrad (𝜂 > 6)

B0 Detector 5.5 < 𝜽 < 20.0 mrad (4.6 < 𝜂 < 5.9)



Far-Forward Detector 
Subsystems



B0 Detectors
Ø Detector subsystem embedded in an accelerator 

magnet.

15

This is the opening where the 
detector planes will be inserted

Credit to 
Ron Lassiter

Space for detectors 

Hadrons

Electrons



B0 Detectors
Ø Detector subsystem embedded in an accelerator 

magnet.

Space for detectors 

16

Hadrons

Electrons
Karim Hamdi and Ron Lassiter



Tracking planes

Hadron beam pipe

Electron quad 
(Q0EF)

ePIC DD4HEP Simulation

Ø Technology choices:
Ø Tracking: 4 layers AC-LGADs
Ø PbWO4 or LYSO EMCAL.
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B0 Tracking and EMCAL Detectors
PbWO4/LYSO 
EMCAL (behind 
tracker)

Ø Status
ü Used to reconstruct charged particles and photons.

ü Acceptance: 5.5 < 𝜃 < 20.0 mrad on one side, up to 
13mrad on the other.

ü Focus now is on readout, new tracking software, and 
engineering support structure.

ü Stand-alone simulations have demonstrated tracking 
resolution. 

• https://indico.bnl.gov/event/17905/
• https://indico.bnl.gov/event/17622/

https://indico.bnl.gov/event/17905/
https://indico.bnl.gov/event/17622/
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B    Detectors
Design for two detectors is converging:

Si Tracker:
● 4 Layers of AC-LGAD à provide 

~20um spatial resolution (with 
charge sharing) and 20-40ps timing 
resolution.

● Technology overlap w/ Roman pots

EM Calorimeter:
● 135 2x2x7*cm3 LYSO crystals
● Good timing and position resolution
● Technology overlap with ZDC

* ZDC wants slightly longer crystals, ideally, we will use the same length in both detectors

CAD Look credit: Jonathan Smith

135 scintillating 
crystals

Readout & 
cable space

Rails for 
installation 
& support

4 Tracking layers
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B    Detectors - Simulation Studies

Si Tracker:
● Resolution plots made by Alex Jentsch with standalone setup (more here and here)
● ACTS Tracking (a long-standing problem) was recently solved and is implemented in 

the simulation (see recent Sakib R slides), we expect more results soon

EM Calorimeter:
● Caveat - studies performed with PbWO4 crystals, LYSO crystals still to be 

implemented in the simulation.
● General performance studies by Michael Pitt (more in FF weekly meeting)
● Sensitivity to soft photons (see Eden Mautner talk at the EICUG EC workshop 

early this week)

https://indico.bnl.gov/event/17905/
https://indico.bnl.gov/event/17622/
https://indico.bnl.gov/event/19941/contributions/78066/attachments/48241/81935/ACTS%20Tracking%20With%20B0%20-%20Update%201.pdf
https://indico.bnl.gov/event/18001
https://indico.jlab.org/event/696/contributions/13196/


B    Tracking - Performance
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● 27cm spacing with fully AC-LGAD 
system and 5% radiation length 
may be the most-realistic option.

● Reduced spacing (from 
30cm) to make room for 
EMCAL.

● Needs to be looked at with 
proper field map and layout.

● Resolution impact on physics still 
being evaluated.

Note: momentum resolution (dp/p)  is 
~2-4%, depending on configuration.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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 + HD; 80 < p < 100 GeV/c
0

27cm spacing + TimePix (3 layers, 16um) + ACLGAD (1 layer, 20um) + 1%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + full ACLGAD 20um res. + 1%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + full ACLGAD 20um res. + 5%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + ITS3 (3 layers, 6um) + ACLGAD (1 layer, 20um) + 1%X

 + HD; 80 < p < 100 GeV/c
0

27cm spacing + faux field map + full ACLGAD 20um res. + 5%X

 + HD; 30 < p < 41 GeV/c
0

27cm spacing + faux field map + full ACLGAD 20um res. + 5%X
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B    EMCal - Performance
● Acceptance 5.5 < 𝜃 < 23 mrad 
● Very low material budget in 5 < η < 5.5

Particles within 5.5 < 𝜃 < 15 mrad don’t cross the beampipe

Photons:
➢ High acceptance in a broad energy 

range (> 100s MeV), including ~MeV 
de-excitation photons

➢ Energy resolution of 6-7%
➢ Position resolution of ~3 mm

Neutrons:
➢ 50% detection efficiency (λ is almost 1)



Where do the particles go past the B0?
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B1apf

B2apf

ZDC
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B1apf

RP

B2apf

ZDC

Protons with ~35-50% momentum 

w.r.t. steering magnets.

Protons with ~50-

60% momentum 

w.r.t. s
teering 

magnets.

OMD

• Off-momentum protons → smaller magnetic 
rigidity → greater bending in dipole fields.

• Important for any measurement with nuclear 
breakup!
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• Off-momentum protons → smaller magnetic 
rigidity → greater bending in dipole fields.

• Important for any measurement with nuclear 
breakup!
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B1apf

RP

B2apf

ZDC

Protons with ~35-50% momentum 

w.r.t. steering magnets.

Protons with ~50-

60% momentum 

w.r.t. s
teering 

magnets.

ZDC

neutrons and photons ZDC

OMD

RP

Protons with > 60% of 

the beam momentum 

can be reconstructed by 

the Roman pots.



Roman Pots and OMD
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Full GEANT4 simulation.Protons
E = 275 GeV
0 < 𝜽 < 5 mrad

Proton 
trajectories

Protons
123.75 < E < 151.25 GeV
(45% < xL < 55%)
0 < 𝜽 < 5 mrad (kind of)

RP

OMD

B0

ZDC

RP

OMD

ZDC

High-angle (𝜃 > 2mrad) 
particles lost in aperture.



Roman Pots and OMD 
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ZDCZDC
RP

OMD



Roman Pots and OMD 
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ZDCZDC

RP

CAD Look credit: Ron Lassiter 



Roman Pots and OMD 
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B1apf

ZDCZDC

RP

CAD Look credit: Ron Lassiter 



Roman Pots and OMD 
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B1apf

ZDCZDC

RP

CAD Look credit: Ron Lassiter 

● Technology
● “Potless” design concept with thin RF foils surrounding detector 

components.



Roman Pots and OMD 
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B1apf

B2apf

ZDCZDC

CAD Look credit: Ron Lassiter 

● Technology
● “Potless” design concept with thin RF foils surrounding detector 

components.
● 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution 

à High-precision space and time information!
● Similar concept for the OMD, just different active area and shape.

25.6 cm

12
.8

 c
m



CAD Look credit: Ron Lassiter 

Roman Pots and OMD 
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B1apf

B2apf

ZDCZDC

OMDMore engineering work is currently underway to optimize the layout, support structure, cooling, and 
movement systems for inserting the detectors into the beamline.

● Technology
● “Potless” design concept with thin RF foils surrounding detector 

components.
● 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution 

à High-precision space and time information!
● Similar concept for the OMD, just different active area and shape.
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12
.8

 c
m



33

Roman “Pots” @ the EIC

DD4HEP 
Simulation

25.6 cm

12
.8

 c
m

𝜎!,# = 𝛽(𝑧)!,#𝜖!,# + 𝐷!,#
∆𝑝
𝑝

$

𝜎 𝑧 is the Gaussian width of the beam, 𝛽 𝑧 is the RMS 
transverse beam size, 𝜀 is the beam emittance, and D is the 
momentum dispersion.

Ø Low-pT cutoff determined by beam optics.
Ø The safe distance is ~10𝜎 from the beam center.
Ø 1𝜎 ~ 1mm

Ø These optics choices change with energy, but can also be changed within a 
single energy to maximize either acceptance at the RP, or the luminosity.
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~20 cm

High DivergenceHigh Divergence

275 GeV DVCS Proton Acceptance
Digression: Machine Optics (IP6)

High Divergence
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~20 cm

High DivergenceHigh Divergence

High Acceptance

275 GeV DVCS Proton Acceptance

High Acceptance

Digression: Machine Optics (IP6)

High Divergence
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~20 cm

High DivergenceHigh Divergence

High Acceptance

275 GeV DVCS Proton Acceptance

High Acceptance

Using the two configurations, we 
are able to measure the low-t 
region (with better acceptance) and 
high-t tail (with higher luminosity).

HDHA

Digression: Machine Optics (IP6)



~25 cm

High Divergence High Divergence

Need both detector systems 
together here!

100 GeV DVCS Proton Acceptance
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Digression: Machine Optics (IP6)
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High Divergence
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High Acceptance

High Divergence

Need both detector systems 
together here!

100 GeV DVCS Proton Acceptance
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Digression: Machine Optics (IP6)



Summary of Detector Performance
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Roman Pots, p = 100 GeV/c
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Detector + beam effects
B0 Detector, p = 100 GeV/c
B0 Detector, p = 41 GeV/c
Roman Pots, p = 275 GeV/c
Roman Pots, p = 100 GeV/c

 ~ 0.5
L

OMD, x

• All beam effects included!
• Angular divergence.
• Crossing angle.
• Crab rotation/vertex smearing.

Beam effects the dominant 
source of momentum 
smearing!



• Need a calorimeter which can accurately 
reconstruct neutral particles

• Neutrons and photons react differently in 
materials – need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

40

B1apf

B2apf

ZDCZDC

neutrons and 

photons

ZDC



• Need a calorimeter which can accurately 
reconstruct neutral particles

• Neutrons and photons react differently in 
materials – need both an EMCAL and an HCAL!

Zero-Degree Calorimeter
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B1apf

B2apf

ZDCZDC

neutrons and 

photons

ZDC

photon

neutron



ZDC - What’s New
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ZDCZDC● 1st Silicon & crystal calorimeter (PbWO4 or LYSO):
○ Smaller lateral dimension (x, y) = (56, 54) cm.

• Pb-Scintillator (+ fused silica)
• Towers of 10cm x 10cm x 48cm, 

each module 60cm x 60cm x 48cm
• 3 modules

Readout setup 
from top & bottom

Overall length within 2m limit

• W/Silicon Imaging EMCAL
• Transverse size (x,y) = 

(56, 54) cm
• 12 layers (~24𝜒8)



ZDC - Performance
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● Energy resolution in the new design 
acceptable → Optimization, test of 
different ideas within the size limit. 

● Next steps:
○ Implementation of reconstruction 
○ Position resolution & shower 

development study ongoing for the 
imaging part of HCAL

YR Requirement

Current Study

Previous design

Neutron Energy Resolution

Current:               %&%
(
+ 4.1%

Requirement:       )*%
(
+ 5%

Previous Study: %+%
(
+ 2.1%
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Quasi-elastic electron 
scattering

u-channel backward 
exclusive electroproduction

…and MANY more!

(some) Far-Forward Physics at the EIC 
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Quasi-elastic electron 
scattering

u-channel backward 
exclusive electroproduction

…and MANY more!

(some) Far-Forward Physics at the EIC 

Full FF region

Roman Pots, B0

Off-M
omentum 

Detectors, ZDC, B0

Full FF Region

Off-M
omentum 

Detectors, ZDC, B0
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065205, (2021) (Editor’s Suggestion)

B0 Detector and ZDC
Off-M

omentum 

Detectors, ZDC, B0



Some final comments 
(by request)



The importance of the B0 for the meson program
• Needed for measuring final states with 𝜃 > 5.5 mrad.

• Especially important at medium and low hadron beam energies at the EIC.
• Important for incoherent vetoing in e+A (heavy nuclear) collisions.

• Charged particles and photons.
• The B0 tracking system behaves like a normal spectrometer, so anything 

which decays with particles in its acceptance can be reconstructed just 
like in the forward tracking disks!
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GEANT simulation: 100 GeV proton

𝜌* → 𝜋,𝜋- decay 
from u-channel production



The importance of the B0 for the meson program

• 𝜌# → 𝜋$𝜋% decay studied with 
eSTARLight 5x41 events (generated by 
Zach Sweger).

• Reconstruction performed with EicRoot.

48

𝜌* → 𝜋,𝜋- decay 
from u-channel production

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
]2 [GeV/c-π+π

Invariant Mass, M
0

1000

2000

3000

4000

5000

Generated

Reconstructed



Lambda Decay (p + 𝜋-) 
• Boost causes the lambda to be able to 

decay 10s of meters from the IP.
• Significant problem since reconstruction of 

this displaced secondary vertex within the 
hadron magnets is very challenging.

49
𝞚

𝜋-

p



Lambda Decay (p + 𝜋-) 
• Boost causes the lambda to be able to 

decay 10s of meters from the IP.
• Significant problem since reconstruction of 

this displaced secondary vertex within the 
hadron magnets is very challenging.

50
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Zvtx [meters]

80 GeV < Elambda < 100 GeV

B0 detector cutoff

~21 meters

~5.8 meters



Lambda Decay (p + 𝜋-) 
• Boost causes the lambda to be able to 

decay 10s of meters from the IP.
• Significant problem since reconstruction of 

this displaced secondary vertex within the 
hadron magnets is very challenging.
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𝞚

𝜋-

p

Zvtx [meters]

30 GeV < Elambda < 41 GeV

B0 detector cutoff

Lower beam energies help for 
the charged particle final state.

~21 meters

~5.8 meters



ZDC & neutral particle exit

Neutrons
E = 275 GeV
0 < 𝜽 < 5 mrad

Want to have as large an incident 
angle with the beam pipe as possible.

This is the problem area → shallow 
incident angle can increase effective 
material thickness by ~ factor of 10!!

This will reduce our detection efficiency 
beyond just the aperture limit!
ØUpdated design in-production.



Summary and Takeaways
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• Far-Forward detectors uniquely challenging in realization of ePIC!
• Integrated with beamline à crowded area, complicated constraints on rates, beam 

operations, etc.
• Trying to cover broad phase space not covered by main detector à Crucial for physics 

program!
• Need to identify areas of complementarity to hone needs for IP8!

• Technologies identified for the all subsystems, and (many) simulations have been 
carried out à engineering design underway for CD-2/3A

• Backgrounds have been studied à more to do! (see information here)

Want to get involved?? Join our meetings and learn how!
Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed)
Indico: https://indico.bnl.gov/category/407/
Wiki: https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-l

https://wiki.bnl.gov/EPIC/index.php?title=Background
https://indico.bnl.gov/category/407/
https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration
https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-l


Thank you!
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Julep Lilu

They (mostly) get 
along.

She’s in a 
death metal 
band.



Backup
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Preliminaries
• The EIC physics program includes reconstruction of final states with very 

far-forward protons, from many different possible collision systems.
• e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
• Produces protons with a broad range in longitudinal momentum, which then 

traverse the full hadron-going lattice (dipoles and quads).
• Momentum reconstruction requires transfer matrices to describe particle 

motion through the magnets.
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(𝑥./0.,𝑦./0.)(𝑥23,𝑦23)
𝑀4 𝑀$ 𝑀+

𝑀056789/5 = 𝑀4𝑀$𝑀+…

• Transforms coordinates at detectors (position, angle) to 
original IP coordinates.

• Matrix unique for different positions along the beam-axis!



1.88 28.97 .0 0.0 0.0 0.25
−0.0211 0.21 0.0 0.0 0.0 −0.034
0.0 0.0 −2.26 3.78 0.0 0.0
0.0 0.0 −0.18 −0.145 0.0 0.0

0.057 1.014 0.0 0.0 1.0 0.026
0.0 0.0 0.0 0.0 0.0 1.0

𝑥:;
𝜃!:;
𝑦:;
𝜃#:;
𝑧:;
Δ𝑝/𝑝

=

𝑥$&<
𝜃!,$&<
𝑦$&<
𝜃#$&<
𝑧$&<
Δ𝑝/𝑝

• Matrix describes how particles travel through the magnets toward the detector.

From BMAD – central 
trajectory 275 GeV proton

𝑥$=<, 𝑦$=<
𝑥$&<, 𝑦$&<

𝜃!,$&<, 𝜃#,$&<

Z = 26m Z = 28m
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Matrix enables reconstruction of scattering information 
at the IP using only local hits at the detector.

(𝑥./0.,𝑦./0.)(𝑥23,𝑦23)
𝑀4 𝑀$ 𝑀+

𝑀056789/5 = 𝑀4𝑀$𝑀+…

Detector

Preliminaries
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𝒍𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍 𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏

𝒙𝑳 =
𝒑𝒛,𝒑𝒓𝒐𝒕𝒐𝒏
𝒑𝒛,𝒃𝒆𝒂𝒎

For a 275 GeV beam, a 270 GeV proton has an xL of 0.98.

1.88 28.97 0.0 0.0 0.0 0.25
−0.0211 0.21 0.0 0.0 0.0 −0.034
0.0 0.0 −2.26 3.78 0.0 0.0
0.0 0.0 −0.18 −0.145 0.0 0.0

0.057 1.014 0.0 0.0 1.0 0.026
0.0 0.0 0.0 0.0 0.0 1.0

𝑥:;
𝜃!:;
𝑦:;
𝜃#:;
𝑧:;
Δ𝑝/𝑝

=

𝑥$&<
𝜃!,$&<
𝑦$&<
𝜃#$&<
𝑧$&<
Δ𝑝/𝑝

From BMAD – central 
trajectory 275 GeV proton

• Protons from nuclear breakup, or high-Q2 e+p interactions → 
protons can have large deviations from central orbit 
momentum → require unique matrices!

The Problem

Full GEANT4 simulation.
Protons
E = 275 GeV
0 < 𝜽 < 5 mrad

Roman Pots

Off-Momentum 
Detectors
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Reconstruction
• General methods for tracking:

• Matrix method (standard) à should always 
have access to this to check performance.

• Machine learning methods à more-general 
for broader set of final-state momenta.
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• Framework: PyTorch
• Architecture: Multi-Layer 

Perceptron
• 3 Independent Models:
• 5 Hidden Layers, 128 Neurons
• Loss Function: Huber Loss
• Optimizer: Adam
• Performance is excellent for Pz

and shows little dependence on xL
• Pt performance is good, but needs 

further optimization, and 
performance suffers at very low Pt

𝑥
𝜃!
𝑦
𝜃#

→ 𝑃I
𝑥
𝜃!
𝑃I

→ 𝑃!

𝑦
𝜃#
𝑃I

→ 𝑃#

David Ruth & Sakib Rahman
Progress on RP reconstruction.



Roman Pots 
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• Roman Pots are silicon sensors placed in a “pot”, which is then injected into the beam pipe, 
tens of meters or more from the interaction point (IP).

• Momentum reconstruction carried out using matrix transport of protons through magnetic 
lattice.

Beam pipe

Beam

Scattered 
protons

View along 
beam

Side view

Roman Pots at ~30 m from IP → 𝜃 ∽ 0 - 5 mrad
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Roman “Pots” @ the EIC

DD4HEP Simulation

• Technology
Ø 500um, pixilated AC-LGAD sensor provides both fine 

pixilation.
Ø “Potless” design concept with thin RF foils 

surrounding detector components.

25.6 cm

12
.8

 c
m

Ø Status
ü Acceptance: 0.0* < 𝜃 < 5.0 mrad (lower bound 

depends on optics).
ü Detector directly in-vacuum a challenge for both 

detector and beam → impedance studies underway.
ü Approved generic R&D to develop more-adaptive 

reconstruction code!



Off-Momentum Detectors
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Off-momentum detectors implemented as 
horizontal ”Roman Pots” style sensors.

DD4HEP Simulation

EICROOT GEANT4 simulation.

OMD

Roman Pots

ZDC

Protons
123.75 < E < 151.25 GeV
(45% < xL < 55%)
0 < 𝜽 < 5 mrad

Proton 
trajectories

Ø Status
ü Acceptance: 0.0 < 𝜃 < 5.0 mrad
ü Same technology as for the 

Roman Pots.
ü Even more-challenging 

reconstruction with off-
momentum particles → extreme 
orbit path in the magnets.



Far-Backward Detectors



Measuring Luminosity
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https://indico.cern.ch/event/1238718/contribution
s/5431923/attachments/2687365/4665564/Dhevan
_PS_ePIC_ColabMeeting_July29_2023.pdfSlide from Dhevan Gangadharan and Nick Zachariou

https://indico.cern.ch/event/1238718/contributions/5431923/attachments/2687365/4665564/Dhevan_PS_ePIC_ColabMeeting_July29_2023.pdf
https://indico.cern.ch/event/1238718/contributions/5431923/attachments/2687365/4665564/Dhevan_PS_ePIC_ColabMeeting_July29_2023.pdf
https://indico.cern.ch/event/1238718/contributions/5431923/attachments/2687365/4665564/Dhevan_PS_ePIC_ColabMeeting_July29_2023.pdf
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Tagging Electrons at Low-Q2

Slide from Jaroslav Adam (CTU)



Tagging Electrons at Low-Q2
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Slide from Jaroslav Adam (CTU)
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Tagging Electrons at Low-Q2

Slide from Jaroslav Adam (CTU)
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Low-Q2 Reconstruction

Slide from Jaroslav Adam (CTU)
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Low-Q2 Reconstruction

Slide from Jaroslav Adam (CTU)



The Far-Forward Detectors collaboration
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