Far-Forward Detectors at the EIC

Alex Jentsch (Brookhaven National Laboratory) For the ePIC Collaboration

Toward Improved Hadron Femtography in Hard Exclusive Reactions August $7^{\text {th }}-11^{\text {th }}, 2023$

Jefferson Lab, Newport News, VA

What is meant by Far-Forward?

(some) Far-Forward Processes at the EIC

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei

coherent/incoherent J / ψ production in e+A

u-channel backward exclusive electroproduction

(some) Far-Forward Physics at the EIC

Sullivan process

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei
-)

coherent/incoherent J / ψ production in e+A
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch,
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

(some) Far-Forward Physics at the EIC

>Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states \rightarrow tailored detector subsystems.
$>$ Various beams and energies (h: 41, 100-275 GeV, e: $5-18 \mathrm{GeV}$; e+p, e+d, e+Au, etc.).
$>$ Placing and operation of far-forward detectors uniquely challenging due to integration with accelerator.

BOpf combined function magnet

Far-Forward Detector Subsystems

B0 Detectors

$>$ Detector subsystem embedded in an accelerator magnet.

Hadrons

B0 Detectors

$>$ Detector subsystem embedded in an accelerator magnet.

Karim Hamdi and Ron Lassiter

Hadrons

B0 Tracking and EMCAL Detectors

B⿳⺈⿴囗十一贝刂电Detectors

Design for two detectors is converging：

Si Tracker：

－ 4 Layers of AC－LGAD \rightarrow provide ～20um spatial resolution（with charge sharing）and 20－40ps timing resolution．
－Technology overlap w／Roman pots EM Calorimeter：
－ $1352 \times 2 \times 7^{*} \mathrm{~cm}^{3}$ LYSO crystals
－Good timing and position resolution
－Technology overlap with ZDC

＊ZDC wants slightly longer crystals，ideally，we will use the same length in both detectors

B? Detectors - Simulation Studies

Si Tracker:

- Resolution plots made by Alex Jentsch with standalone setup (more here and here)
- ACTS Tracking (a long-standing problem) was recently solved and is implemented in the simulation (see recent Sakib R slides), we expect more results soon

EM Calorimeter:

- Caveat - studies performed with PbWO4 crystals, LYSO crystals still to be implemented in the simulation.
- General performance studies by Michael Pitt (more in FF weekly meeting)
- Sensitivity to soft photons (see Eden Mautner talk at the EICUG EC workshop early this week)

- $\quad 27 \mathrm{~cm}$ spacing with fully AC-LGAD system and 5\% radiation length may be the most-realistic option.
- Reduced spacing (from 30 cm) to make room for EMCAL.
- Needs to be looked at with proper field map and layout.
- Resolution impact on physics still being evaluated.

Note: momentum resolution (dp / p) is $\sim 2-4 \%$, depending on configuration.

- Acceptance $5.5<\theta<23 \mathrm{mrad}$
- Very low material budget in $5<\eta<5.5$
$\square-8$

Particles within $5.5<\theta<15$ mrad don't cross the beampipe

Photons:

> High acceptance in a broad energy range (> 100s MeV), including $\sim \mathrm{MeV}$ de-excitation photons

- Energy resolution of 6-7\%
> Position resolution of $\sim 3 \mathrm{~mm}$
Neutrons:
> 50% detection efficiency (λ is almost 1)
electron beampipe

Where do the particles go past the $B O$?

Where do the particles go past the BO ?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Protons with ~50
60% momentum
masnets.
longitudinal momentum fraction

$$
\boldsymbol{x}_{L}=\frac{\boldsymbol{p}_{z, \text { proton }}}{\boldsymbol{p}_{\text {z,beam }}}
$$

OMD

Where do the particles go past the BO ?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Protons with ~ 50
60% momentum

Protons with $\sim 35-50 \% ~ m$
w.r.t. steering magnets.
B1apf

OMD

Where do the particles go past the BO?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Roman Pots and OMD

Protons

$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Protons
123.75 < E < 151.25 GeV
($45 \%<x L<55 \%$)
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$ (kind of)

Roman Pots and OMD

Roman Pots and OMD

CAD Look credit: Ron Lassiter

Roman Pots and OMD

Roman Pots and OMD

Roman Pots and OMD

लवसा)

Roman Pots and OMD

- Technology
- "Potless" design concept with thin RF foils surrounding detector components.
- 500 um, pixilated AC-LGAD sensor, with $30-40$ ps timing resolution \rightarrow High-precision space and time information!
- Similar concept for the OMD, just different active area and shape.

More engineering work is currently underway to optimize the layout, support structure, cooling, and movement systems for inserting the detectors into the beamline.

Roman "Pots" @ the EIC
25.6 cm

$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size, ε is the beam emittance, and D is the momentum dispersion.

$$
\sigma_{x, y}=\sqrt{\beta(z)_{x, y} \epsilon_{x, y}+\left(D_{x, y} \frac{\Delta p}{p}\right)^{2}}
$$

Simulation

Low-pT cutoff determined by beam optics.
$>$ The safe distance is ${ }^{\sim} 10 \sigma$ from the beam center.
$>1 \sigma \sim 1 \mathrm{~mm}$
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

Digression: Machine Optics (IP6)

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

Digression: Machine Optics (IP6)
275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$-> lower lumi., smaller beam at RP

Digression: Machine Optics (IP6)

275 GeV DVCS Proton Acceptance

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

Digression: Machine Optics (IP6)

Digression: Machine Optics (IP6)

Improves low p_{t} acceptance.

Summary of Detector Performance

- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.

Beam effects the dominant source of momentum

 smearing!
Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct neutral particles
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct neutral particles
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

ZDC - What's New

- $1^{\text {st }}$ Silicon \& crystal calorimeter (PbWO4 or LYSO):
- Smaller lateral dimension $(x, y)=(56,54) \mathrm{cm}$.

Readout setup from top \& bottom

- W/Silicon Imaging EMCAL
- Transverse size $(x, y)=$ $(56,54) \mathrm{cm}$
- 12 layers ($\sim 24 \chi_{0}$)
- Pb-Scintillator (+ fused silica)
- Towers of $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 48 \mathrm{~cm}$, each module $60 \mathrm{~cm} \times 60 \mathrm{~cm} \times 48 \mathrm{~cm}$
- 3 modules

ZDC - Performance

Neutron Energy Resolution

- Energy resolution in the new design acceptable \rightarrow Optimization, test of different ideas within the size limit.
- Next steps:
- Implementation of reconstruction
- Position resolution \& shower development study ongoing for the imaging part of HCAL

(some) Far-Forward Physics at the EIC

Sullivan process

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei
1)

coherent/incoherent J / ψ production in e+A [2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch,
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

(some) Far-Forward Physics at the EIC

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020) [2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)
coherent/incoherent J / ψ production in e

u-channel backward exclusive electroproduction

...and MANY more!

Some final comments
(by request)

The importance of the B0 for the meson program

- Needed for measuring final states with $\theta>5.5$ mrad.
- Especially important at medium and low hadron beam energies at the EIC.
- Important for incoherent vetoing in e+A (heavy nuclear) collisions.
- Charged particles and photons.
- The B0 tracking system behaves like a normal spectrometer, so anything which decays with particles in its acceptance can be reconstructed just like in the forward tracking disks!

GEANT simulation: 100 GeV proton

The importance of the B0 for the meson program

- $\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay studied with eSTARLight 5×41 events (generated by Zach Sweger).
- Reconstruction performed with EicRoot.

$\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay
from u-channel production

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

"

ZDC \& neutral particle exit
Want to have as large an incident angle with the beam pipe as possible.

Neutrons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

This is the problem area \rightarrow shallow incident angle can increase effective material thickness by ~ factor of 10!!

> This will reduce our detection efficiency beyond just the aperture limit! $>$ Updated design in-production.

Summary and Takeaways

- Far-Forward detectors uniquely challenging in realization of ePIC!
- Integrated with beamline \rightarrow crowded area, complicated constraints on rates, beam operations, etc.
- Trying to cover broad phase space not covered by main detector \rightarrow Crucial for physics program!
- Need to identify areas of complementarity to hone needs for IP8!
- Technologies identified for the all subsystems, and (many) simulations have been carried out \rightarrow engineering design underway for CD-2/3A
- Backgrounds have been studied \rightarrow more to do! (see information here)

```
Want to get involved?? Join our meetings and learn how!
Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed)
Indico: https://indico.bnl.gov/category/407/
Wiki: https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I
```


Thank you!

Backup

Preliminaries

- The EIC physics program includes reconstruction of final states with very far-forward protons, from many different possible collision systems.
- e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
- Produces protons with a broad range in longitudinal momentum, which then traverse the full hadron-going lattice (dipoles and quads).
- Momentum reconstruction requires transfer matrices to describe particle motion through the magnets.

$$
\left(\begin{array}{c}
x_{i p} \\
\theta_{x, i p} \\
y_{i p} \\
\theta_{y, i p} \\
z_{i p} \\
\Delta p / p
\end{array}\right)=\left(\begin{array}{llllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
d_{0} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} \\
e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
f_{0} & f_{1} & f_{2} & f_{3} & f_{4} & f_{5}
\end{array}\right)\left(\begin{array}{c}
x_{\text {det. }} \\
\theta_{x, \text { det. }} \\
y_{\text {det. }} \\
\theta_{y, \text { det. }} \\
z_{\text {det. }} \\
\Delta p / p
\end{array}\right)
$$

- Transforms coordinates at detectors (position, angle) to original IP coordinates.
- Matrix unique for different positions along the beam-axis!

Preliminaries

$\left(\begin{array}{cccccc}1.88 & 28.97 & .0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

From BMAD - central trajectory 275 GeV proton

- Matrix describes how particles travel through the magnets toward the detector.

Matrix enables reconstruction of scattering information at the IP using only local hits at the detector.

Detector

The Problem

$\left(\begin{array}{cccccc}1.88 & 28.97 & 0.0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

From BMAD - central trajectory 275 GeV proton

- Protons from nuclear breakup, or high- $\mathrm{Q}^{2} \mathrm{e}+\mathrm{p}$ interactions \rightarrow protons can have large deviations from central orbit momentum \rightarrow require unique matrices!

$$
\begin{aligned}
& \text { longitudinal momentum fraction } \\
& \qquad x_{L}=\frac{p_{z, \text { proton }}}{p_{z, \text { beam }}}
\end{aligned}
$$

Full GEANT4 simulation.
Protons
$E=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Results - Momentum

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

[^0]
Results - p_{T}

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Reconstruction

- General methods for tracking:
- Matrix method (standard) \rightarrow should always have access to this to check performance.
- Machine learning methods \rightarrow more-general for broader set of final-state momenta.

- Framework: PyTorch
- Architecture: Multi-Layer Perceptron
- 3 Independent Models:
- 5 Hidden Layers, 128 Neurons
- Loss Function: Huber Loss
- Optimizer: Adam
- Performance is excellent for P_{2} and shows little dependence on X_{L}
- P_{t} performance is good, but needs further optimization, and performance suffers at very low P_{t}

David Ruth \& Sakib Rahman

Roman Pots

Roman Pots are silicon sensors placed in a "pot", which is then injected into the beam pipe, tens of meters or more from the interaction point (IP).
Momentum reconstruction carried out using matrix transport of protons through magnetic lattice.
25.6 cm

Technology

$>$ 500um，pixilated AC－LGAD sensor provides both fine pixilation．
＞＂Potless＂design concept with thin RF foils surrounding detector components．

レレケாடr गlliuldull

$>$ Status

\checkmark Acceptance： $0.0^{*}<\theta<5.0$ mrad（lower bound depends on optics）．
\checkmark Detector directly in－vacuum a challenge for both detector and beam \rightarrow impedance studies underway．
\checkmark Approved generic R\＆D to develop more－adaptive reconstruction code！

Off-Momentum Detectors

Off-momentum detectors implemented as horizontal "Roman Pots" style sensors.

```
Protons
\[
123.75 \text { < E < } 151.25 \mathrm{GeV}
\]
\[
(45 \%<x L<55 \%)
\]
\[
0<\boldsymbol{\theta}<5 \mathrm{mrad}
\]
```

Far-Backward Detectors

Measuring Luminosity

Experimental Goal:

Count the number of Bremsstrahlung photons: N_{\curlyvee}
Photons travel co-linear with electron in beam pipe

Pair Spectrometer (PS):
Counts pair conversions
Direct photon CAL:
Counts photons directly.
Trackers

https://indico.cern.ch/event/1238718/contribution s/5431923/attachments/2687365/4665564/Dhevan PS ePIC ColabMeeting July29 2023.pdf

Tagging Electrons at Low-Q²

- Jaroslav Adam (Project Lead) jaroslav.adam@fjfi.cvut.cz
- Simon Gardner (Technical Lead) Simon. Gardner@Glasgow.ac.uk
- Two low- Q^{2} tagger detectors along outgoing electron beam pipe
- Placed at about -20 m and -36m from IP

Slide from Jaroslav Adam (CTU)

Tagging Electrons at Low-Q²

- Photoproduction in $10^{-3} \lesssim Q^{2} \lesssim 10^{-1} \mathrm{GeV}^{2}$
- Scattered electrons for meson spectroscopy and exclusive pair production
- Help for luminosity measurement by coincidence with pair spectrometer
- Large background and event rates due to Bethe-Heitler bremsstrahlung - illustrated by comparing to photoproduction cross section
- The background can be mitigated by good tracking and Q^{2} reconstruction

Tagging Electrons at Low-Q²

- Detectors outside beam vacuum
- Several considerations for exit window (material, thin mesh followed by 90° exit window)

Slide from Jaroslav Adam (CTU)

Low-Q² Reconstruction

- Two different ML algorithms giving compatible results
- The algorithms connect reconstructed tracks to kinematics of original scattered electrons (energy and polar and azimuthal angle)
- Q^{2} is obtained from electron energy and polar angle
- Plot shows combined reconstruction in low- Q^{2} taggers and central detector

Low-Q² Reconstruction

- Mixed hepmc of signal (quasi-real photoproduction) and background (Bethe-Heitler) events
- Event rates are obtained as a function of reconstructed Q^{2}
- Background tracks reconstruct dominantly to very low Q^{2}

Slide from Jaroslav Adam (CTU)

The Far-Forward Detectors collaboration

Control Account Manager

Yulia Furletova

ZDC DSSTC:
Yuji Goto
BO DSSTC:
BO DSSTC:
Zvi Citron
Zvi Citron
Tel Aviv University, Israel

Ben Gurion University of the Negev, Israel

RIKEN, Japan

BNL, USA
IJCLab, Orsay, France

Kobe University, Japan

University of Kansas, USA
Pacific Northwest National Lab, USA

NCU and Academia Sinica, Taiwan

[^0]: "(x)

