
CLAS12 to operate @ 24GeV at 10.6 GeV luminosities?

CLAS12 luminosity limited by accidental occupancy of DC R1.

High occupancy in part of R1 limits acceptable operating luminosity.

→ higher resolution tracking layers

	R1	R2	R3
CLAS12 @ 11	2.6%	0.76%	1.18%
CLAS12 @ 22	2.8%	0.77%	1.23%

Z. Meador, L. Elouadrhiri

Accidental occupancies increase by less than 10% at 24 GeV compared to 11 GeV.

Additional μ -RWELL tracking layers under development enabling increase in CLAS12 operating luminosity by 2.

S. Stepanyan

Hall C at higher energy

Phase 2: Higher Energy + SHMS/new VHMS

New spectrometer with higher momentum and small angle capability

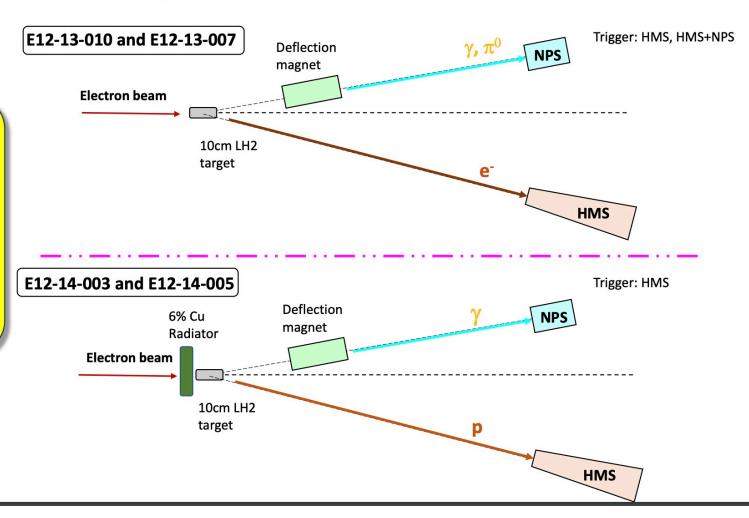
HMS → VHMS "very high momentum spectrometer"

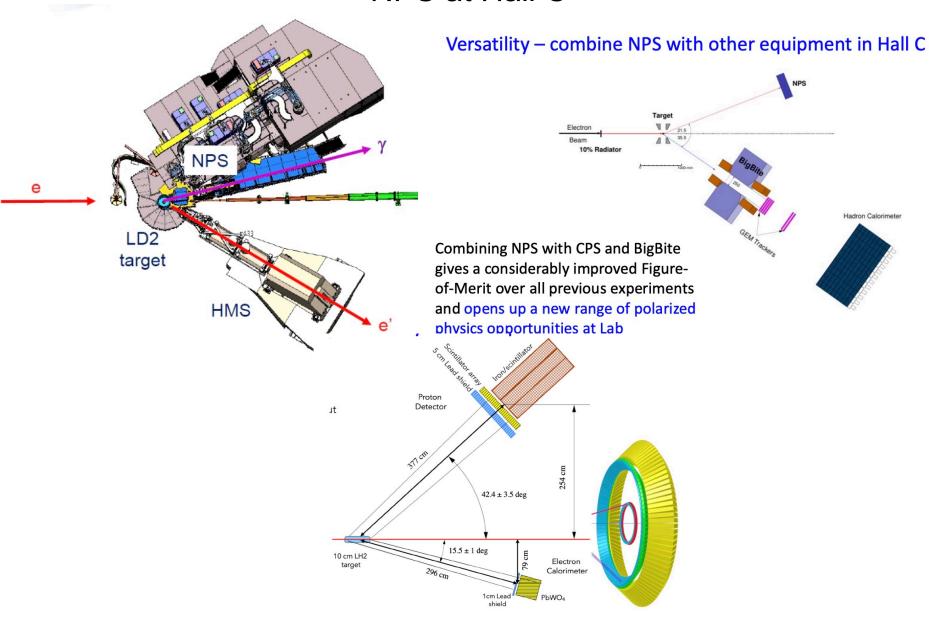
VHMS: θ_{min} =5.5 deg., P_{max} =15 GeV

Opening angle between VHMS-SHMS ~ 20 degrees

Increase Q² reach to 15 GeV²

→ Higher precision at Q²=10, 11.5


E _{Beam}	θ _{SHMS} (e')	P _{SHMS} (e')	θ _{VHMS} ($π$ +)	P _{VHMS} (π+)	Time	
Q^2 =8.5 W=4.18 - t_{min} =0.15 Δε=0.28						
17.0	21.39	3.63	5.55	13.29	20.5	
22.0	12.15	8.63	7.62	13.29	1.8	
Q^2 =10.0 W=4.08 - t_{min} =0.21 Δε=0.30						
17.0	24.49	3.27	5.52	13.62	53.3	
22.0	13.46	8.27	7.85	13.62	4.3	
Q^2 =11.5 <i>W</i> =3.95 - t_{min} =0.29 Δε=0.31						
17.0	27.34	3.03	5.55	13.82	124.8	
22.0	14.66	8.03	8.12	13.82	9.3	
Q^2 =13.0 W=3.96 - t_{min} =0.35 Δε=0.25						
18.0	27.55	3.18	5.54	14.63	209.5	
22.0	16.49	7.18	7.69	14.63	24.4	
Q ² =15.0 W=3.73 $-t_{min}$ =0.52 $\Delta \varepsilon$ =0.26						
18.0	30.24	3.06	5.73	14.66	560	
22.0	17.88	7.06	8.07	14.66	65.7	


NPS at Hall C

Experimental Techniques

The Neutral Particle Spectrometer (NPS) is a new facility in Hall C. Utilizing the well-understood HMS/SHMS infrastructure, it allows for precision (coincidence) cross section measurements of neutral particles (γ and π^0).

NPS at Hall C

