Computer Programming in the
Physics Classroom

Lilian Clairmont, Ph.D.

Appomattox Regional Governor’s School
Iclairmont@args.us

My intention today is to share with you my experience with
two programming platforms that | believe are very useful in
facilitating visualization in physics classroomes.

These platforms are:

I. NetlLogo: a programming language and integrated
development environment for agent-based modeling.

NetLogo

I. Glowscript: a programming environment that allows us to
make web-based 3D models.

Glowscript

Physics demographics @ ARGS

AP students

e Started offering AP for the
2020-2021 year

 (20-21) Enrolment was 40%
physics-60% non-physics
students

* (21-22 and subsequent
years) Enrolment 100% non-
physics students

Non-AP students

2019-2020: strong class of
students;

20-21: strong class of
students

21-22 and subsequent
years: less academic
oriented students

u‘i“
n EA(BQBN%
Create. Lead. Inspire. Achieve.

Obstacles in Physics Visualization

e Difficult for students

Obvious reason: other than position and changes in
position, all other variables are invisible

 Solution: Explore motion representations first

— Recognizing the various types of motion by
observing and cataloging position changes
(motion maps, verbal descriptions, graphical, etc.)

— Classifying the various types of motion (@ rest,
UM, UAM, UCM, etc.) based on patterns and
concepts (inertia and equilibrium.)

Challenges with Kinematics Equations

AP students

Have some difficulty with
connecting equations to
other representations;

Familiarity improves after
some “brute force”
experiences (for example,
where students realize that
equations make it easier to
complete certain tasks —
PhET’s “The Walking Man”
lab)

Non-AP students
e Struggle relating algebraic

and graphical
representations of motion;

Need more “hands-on”
approaches.

— storytelling: from 1D to
graphs to (simple) constraint
problems.

— stop action movie

Both groups also struggle with constraint problems.

(1) Agent-Based Modeling with NetLogo

An agent-based model (ABM) is a computational model for
simulating the actions and interactions of autonomous agents

(*) in order to understand a system’s
behavior and what governs its outcomes.

NetLogo Models Library Categories >

ABM has applications in art, biology, chemistry,
computer science, earth science, ecology,
economics, games, mathematics, networks,
philosophy, psychology, social science, system
dynamics and more.

J O 2 O O S o O O B O o O o O

» Models Library
a-bl Sample Models

Art

Biology

Chemistry & Physics
Computer Science
Earth Science
Games
Mathematics
Networks
Philosophy
Psychology

Social Science
System Dynamics

(*) Autonomous agents are individual or collective entities such as organizations or groups.

NetLogo: Programming Features

-

“Agents” -} Chemistry &Physics
® Chaos in a Box
e Turtles (movable) i Chemical Reactions
. + Crystallization
e Patches (stationary) 4 Diffusion Limited Aggregation
. @ Gas Chromatography
* Links (connectors between turtles) 7| | Gaslab
+ Heat
Interface ® Ising
]] . ® Kicked Rotator
e Buttons, sliders, monitors, switches ® Kicked Rotators
® Lennard-Jones
Agents dare... + MaterialSim
¥ Mechanics

* Named

=]

Polymer Dynamics
i Radioactivity

* Monitored (for programming purposes) ® Sand
* * @ Sandpile
NetLogo: open source software @ Solid Diffusion
@ Turbulence

+ Waves

NetLogo: Platform Features

When you start NetLogo, you will see three tabs:

Interface (i/o) Information

Code (program)

» £ erosol-Diffusion-Mozeél - NetLogo {C:\Users\Lilian\Desktop\ABM MOOC}
File [dit Tools ZoGm Tabs Help

| Interlace Inf.~ Code

! 2 P normal speed =
view updates
2 d + *abc Button w I I i I Settings...
Edit Delete Add on ticks v
ticks: 284
1 I b v N
Aerosol-Particles 100 Air-particles 1580 ;

Interface Tab

» NetlLogo
File Edit Tools Zoom Tabs Help

Irter

face Info Code
normal speed
view updates
% Il Settings

+ ¥abc Button Il I
Add continuous
ticks:

Opens NetLogo
library.

“World”

P

Command Center

|
|

pbserver>

To interact
directly with
the agents

r

.

describes the
program and
how to run it

Info Tab

This code models the diffusion of aerosol particles in a room. | have caiculated the dispersion
time a long time ago, and found it to be 40 seconds for an average room, between opposite
corners. This program is my simulation of the process. AEROSOL-PARTICLES are picked up
by air particles (turtles) and carried away from the place where the aerosol was first sprayed
(bottom left corner of world.)

The program is based on the “Follower” ABM. It is an oversimplification of the actual diffusion
of aerosols, which is: (aerosol particles) collide with air particles, thus changing direction and
eventually, spreading throughout a room.

The model's environment is an average, typical square room, colored white. Most interactions
are between turtles, except for the fact that turtles “know” where the walls are (wrapping
around is disabled), and air particles check patches within FAR-RADIUS for aerosol ones.

Observer interactions with the world are through SETUP and GO buttons; interactions with
turties are through WAVER, AEROSOL-PARTICLES and AIR-PARTICLES sliders.

There are two agents: aerosol and air particles, represented by turties of different colors.
AEROSOL-PARTICLES are picked up by air particles if they are within a certain range from it
(input = radius of the range for the air particle to look for an aerosol one.)

Air: blue, randomly placed (initially), size 0.5; can attach to aerosol turtles (and disperse them
by carrying them along)

AEROSOL-PARTICLES: green, initially located at the bottom-left corner of world, size 0.8; can
be picked up by air turties, and will follow them (if picked up)

.

(explains what |

the agents do
and/or how
they act

J

Code Tab

B | [t | Dientovamsicay

t; Beginning declarations

|2 turtles-own [

leader ;; the turtle this turtle is following,
;3 or nobody if not following

follower ;; the turtle that is following this turtle,
33 or nobody if not being followed

]

53 Set up and initialization
-]
|E to setup

clear-all
ask patches [set pcolor white] ;; white backgrounc
;3 creates air particles based on slider and randoml

create-turtles Air-Particles [
setxy random-xcor random-ycor
set color blue
set size 0.5
set leader nobody
set follower nobody

]

;3 creates aerosol particles based on slider at the

crt Aerosol-Particles [
setxy -16 -16
set color green
set size 0.8
set leader nobody
set follower nobody

;3 procedure to determine whether or not to attach to the aerosol particle

to attach ;; air turtle procedure
;3 find a random patch to test for aerosol around the air turtles
let xd random (far-radius)
let yd random (far-radius)
if random 2 = @ [set xd (- xd)]
if random 2 = @ [set yd (- yd)]
;3 check for aerosol turtles on that patch
let candidate one-of (turtles-at xd yd) with [color = green]
33 if we didn't find a suitable turtle, stop
if candidate = nobody [stop]
;3 we're all set, so latch on!
ask candidate [set follower myself]
set leader candidate
;3 change our color
ifelse follower = nobody
[set color orange]
[set color blue]
33 change our leader's color
ask candidate
[ifelse leader = nobody
[set color orange]
[set color green]]

end

NetLogo: Traffic Jam

* Mimics the movement of cars in a highway

* Agents follow two rules:

1. Deceleration: slows down if it sees a car
close ahead;

2. Acceleration: speeds up if it doesn’t see a car
ahead

NetLogo: Traffic Jam

Controls Feedback
Car speeds
I 11 B ed car
mmmr‘(f’cas 16 : - min speed
| [max speed
setup ‘ go "l
L O
U]
b
&L
red car speed >
0.987 acceleration 0.0045 P Yt
= " 0 e ‘(P P =] ahuiin ¥
deceleration 0.026 0 — time 300

& & a L CAHDH &/ & & H L L L

NetLogo: Aerosol Dispersion

* Simulates the spread of aerosol particles in a
closed, average sized room

* Agents follow one rule:
Neighboring

air particles pick up aerosol particles if they are
in a pre-determined neighboring area.

tLogo: Aerosol Dispersion

1920

of pairs

AciusUI A plﬁ:

Time

[aerosol-air pairs
M air pairticles (free)
[aerosol particles (free)

146

L L L) - - Y L W Laaalha d PG -
r it wll b g v ¥ 4"4“ Lot By -
»
< « A 3 v N a ¥V M vy v F 4 4 Fy
. L' L A “ ba A
»a 5

4 <
-
Yr N KRy
w >y v”
r v A
- . - [- "l

> e
L 4 PE S

NY

N
«

5
v
-
-

n.
>
v,
»
.
.
E'
¥
A
-
¥
-
v
¥
v
Y
L\
.

L. -
sAhw
«
4
A
e

“

e s bl
‘. -
» -
oy 4474
4 «
Y4 44
a
«*
a
A A
A ¥
- > >
‘I
v
-
£ 4
¥
“
«
<
v

#egale 7
| 48
' 4
¢
kN
> oa,
bt

ik
»
A
v
r
“
v

vy =
X
ad
8
4 a
L
-
v
4
v
Ya
<
R TS
i
-~
v *
A
N
.
.
%
»
v

vy
»,
e
‘ﬁ
I

-
.
»
»
-
b4
»
~.
i
v
v
4
-
-
“
N

b e "
»

Aerosol particles change color as
they get picked up by air particles.

SYSTE.,MS

w>0-~<2DOF—-—02

NetLogo: Flocking

e Attempts to mimic the flocking of birds

* Agents follow three rules:

1.
2.

Separation: Avoid birds that are too close;

Cohesion: Move towards nearby birds (rule
#1 overrules #2 if they are too close);

. Alignment: turns so that it is moving in the

same direction as nearby ones are (moving.)

NetLogo: Flocking

|
population 630
Contro | S

setup ‘ go

vision 5.0 patches

I
minimum-separ ation 1.00 patches

I
max-align-turn 5.00 degrees

I
max-cohere-turn 3.00 degrees

) |
max-separate-turn 1.50 degrees

NetLogo: Fire

* Simulates the spread of a fire through a forest
* No wind
* Agents follow one rule:

Neighboring

Must have a tree in the neighboring patch for
the fire to burn

NetLogo: Fire

density 58 %

controls

setup go |

percent burned
9.6

output

Color determines how much
has been burnt

(1) Computer programming with Glow Script

 Computer Animation of motion problems
helps students understand motion and
correlate what they see to the algebra
equations representing them;

* Language: Web VPython
* Easy to run; easy to teach; easy to program

* Taps on students’ creativity (always a
bonus)

Edit this program Screenshot

Projectile
Motion

* added sliders

to enable
Use the slider to adjust the x-component of the initial velocity: .
choices for v1x
0 m/s 11 m/s
Use the slider to adjust the y-componentcc)nf the initial velocity: a nd Vly
0 m/s 11 m/s

Please click on any part of the black background to shoot the projectile.
initial y-velocity = 8.9 m/s

launch speed = 10.68 m/s

launch angle = 56.5 degrees

hang time = 1.79 seconds

range = 10.62 m

Code for Projectile Motion

creates the landscape

Web VPython 3.2
hPr'ojectile Motion with x- and y- sliders
#programmer: Lilian Clairmont

B W N =

#PM - Object definitions

PhysicsBlob=sphere(pos=vec(-11,-2.8,0), radius=0.2, vel=vec(9,0,0),color=color.green, make_trail=True)

ground=box(pos=vec(1,-3,0), length = 27, height = .2, width = 1, color=color.blue) \
Must

18 scene.append_to_caption("Use the slider to adjust the x-component of the initial velocity:\n") # text above the slider bar Create
11 def ProjMotx(sx):
12 print(sx.value) H |
13 PhysicsBlob.vel.x = sx.value graVIty'
14 slider(bind=ProjMotx, min = @, max = 11, step = 0.1, value = 0)
15 scene.append_to_caption("\n @ m/s 11 m/s\n") # define range of slider bar
16

17 #y slider
18 scene.append_to_caption("Use the slider to adjust the y-component
19 def ProjMoty(sy):

20 print(sy.value)

2 PhysicsBlob.vel.y = sy.value

22 slider(bind=ProjMoty, min = ©, max = 11, step =
23 scene.append_to_caption("\n @ m/s

ext above the slider bar

interactive

value = 9)
11 m/s\n") # define range of slider bar

2Y scene.append_to_caption("\n") line

2(scene.append_to_caption("Please on any part of the black background to shoot the projectile.\n") # onscreen instructions to run the program
21 scene.waitfor("click") #Click on the scene withthe projectile
2
29 print('initial x-velocity = ',PhysicsBlob.vel.x, 'm/s')
30 print('initial y-velocity = ',PhysicsBlob.vel.y,'m/s") CaICUIateS
3
#Calculating launch speed and angle muzzle Speed
launchspeed=sqrt(PhysicsBlob.vel.x*PhysicsBlob.vel.x + PhysicsBlob.vel.y*PhysicsBlob.vel.y)
launchangle=atan(PhysicsBlob.vel.y/PhysicsBlob.vel.x) based on
mputs

H O O U
38 launchangle=launchangle*188/pi k

Code for Projectile Motion (cont’d)

launchspeed
launchspeed
launchspeed
launchangle
launchangle
launchangle

(blob)yer= (blob)ye+(blob) gee dt

round(launchspeed)
launchspeed/100
launchangle*10

oo (blob) ,os= (blob)pes+(blob)yer dt + (blob) gee dt - dt

print('launch speed = ',launchspeed, 'm/s")
print('launch angle = ', launchangle,' degrees')

womw o omwn

PhysicsBlob.acc=vec(9,-9.8,0)
t=-0.01
dt=0.01

PR SN IR 5 1 PP & R PN T . T - Y

E =k o+ idt
rate(100)
PhysicsBlob.vel
PhysicsBlob.pos

PhysicsBlob.vel + PhysicsBlob.acc * dt
PhysicsBlob.pos + PhysicsBlob.vel * dt + .5*PhysicsBlob.acc*dt*dt

| St L T L TR S Pl et o 4
PhysicsBlobrange = PhysicsBlob.pos.x + 11
print('range = ',PhysicsBlobrange, 'm')

 Code equations are written as they would be in Physics;

e Easier for students to connect the motion to the algebra
behind it.

Thank you

Lilian Clairmont, Ph.D.

www.linkedin.com/in/lilianfclairmont

Iclairmont@args.us

