ELEMENTARY APPROACHES TO RLC CIRCUITS

Carl E. Mungan, Physics Department

U.S. Naval Academy, Annapolis MD

Part 1: THEORY

driver: $V_{\varepsilon} = \varepsilon_0 \cos \omega t$ (by choice of zero of time)

response:
$$I = I_0 \cos(\omega t - \phi)$$
responds at response lags driving frequency behind driver

capacitor:
$$V_C = \frac{Q}{C}$$

but the current is
$$\frac{dQ}{dt} = I_0 \cos(\omega t - \phi)$$

so that
$$\int dQ = \int I_0 \cos(\omega t - \phi) dt$$

which integrates to
$$Q = \frac{I_0}{\omega} \sin(\omega t - \phi)$$

and thus
$$V_C = \frac{I_0}{\omega C} \sin(\omega t - \phi)$$

Introduce reactance
$$X_C = \frac{1}{\omega C}$$
 to get $V_C = I_0 X_C \sin(\omega t - \phi)$

inductor:
$$V_L = L \frac{dI}{dt} = -L\omega I_0 \sin(\omega t - \phi)$$

introduce reactance $X_L = \omega L$ to get $V_L = -I_0 X_L \sin(\omega t - \phi)$

resistor:
$$V_R = IR$$

so that
$$V_R = I_0 R \cos(\omega t - \phi)$$

emf: introduce impedance
$$Z=\frac{\mathcal{E}_0}{I_0}$$
 so that $V_{\mathcal{E}}=I_0Z\cos\omega t$

$$V_C = I_0 X_C \sin(\omega t - \phi)$$

$$V_L = -I_0 X_L \sin(\omega t - \phi)$$

$$V_R = I_0 R \cos(\omega t - \phi)$$

Now use the voltage loop rule: $V_{\mathcal{E}} = V_R + V_L + V_C$

and divide by I_0 to get

$$Z\cos\omega t = R\cos(\omega t - \phi) - (X_L - X_C)\sin(\omega t - \phi)$$

The two unknowns Z and ϕ are to be expressed in terms of the givens L, R, C, ε_0 , and ω .

$$Z\cos\omega t = R\cos(\omega t - \phi) - (X_L - X_C)\sin(\omega t - \phi)$$

Solve by substituting two orthogonal values of *t*:

$$\omega t = \phi \implies Z \cos \phi = R$$

$$\omega t = \phi - \frac{\pi}{2} \implies Z \sin \phi = X_L - X_C$$

These two results can be summarized on a triangle diagram:

This triangle implies:

the impedance is
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

and the phase shift is
$$\phi = \tan^{-1} \frac{X_L - X_C}{R}$$

So we can graph the amplitude and phase shift of the response:

current amplitude $I_{0} = \frac{\mathcal{E}_{0}}{Z} = \frac{\mathcal{E}_{0}}{\sqrt{R^{2} + (\omega L - 1/\omega C)^{2}}}$ \mathcal{E}_{0}/R RESONANCE

 $1/\sqrt{LC}$

phase lag of the current relative to the emf

$$\phi = \tan^{-1} \frac{\omega L - 1/\omega C}{R}$$

Part 2: EXPERIMENT

• use large coil for L and R

ullet use sinusoidal function generator for arepsilon

- use variable capacitor box for C
- use multimeter for measurements

Actual circuit configured to measure rms capacitor voltage:

During setup, use the Protek multimeter to measure:

•
$$L = 0.83 \text{ H}$$

•
$$L = 0.83 \text{ H}$$
 • $C = 0.98 \mu\text{F}$

so the resonance frequency is 176 Hz

•
$$R = 63 \Omega$$

•
$$V_{\varepsilon} = 3.5 \text{ V rms}$$

and turn the frequency knob on the Pasco function generator in roughly 10 Hz steps.

$$\frac{V_{\varepsilon}}{Z} = I = \frac{V_C}{X_C} \implies V_C = \frac{V_{\varepsilon}}{\sqrt{(2\pi fRC)^2 + (4\pi^2 f^2 LC - 1)^2}}$$

Blue data points compared to red theory curve with NO free parameters.

Comments are welcome!

email: mungan@usna.edu

webpage: usna.edu/Users/physics/mungan