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Intermediate Distance CCSNe
• Intermediate distance regime between galactic and diffuse supernova neutrino 
background (DSNB)

• Motivation: alternative way to get CCSNe neutrinos

◦ cf. SN1987A: 24 events

◦ Galactic CCSNe: 105 events every 40 years

◦ DSNB: several per year

• Most CCSNe will produce ≪ 1 event, so we need to study many SNe to get an 
appreciable number of neutrinos
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CCSNe Explosion Theory
• Core-collapse supernovae (CCSNe) occur in stars of 
masses > 8 M☉

• Upon the Fe core reaching the Chandrasekhar 
mass, electron degeneracy pressure cannot support 
the core and collapse begins

• Once nuclear densities are achieved in the core, 
the core stiffens and an outgoing shock forms

• The shock eventually stalls due to losing energy to 
accreting matter and releasing neutrinos trapped 
within the star
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Neutrino Production on CCSNe
• Spike in ν production at beginning of core-collapse 
due to neutronization of infalling matter

• There is also pair annihilation, β decay, e± capture, 
and other processes

• The proto-neutron star (PNS) cools by releasing 
neutrinos 

• Neutrinos interact with matter behind the shock 
causing shock revival which leads to an explosion
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Neutrino Detection
• Event detection is simulated for a two-tank Hyper-Kamiokande with a total fiducial 
volume of 375 kton

• Consider only detection channel to be inverse beta decay (IBD) :  ҧ𝜈𝑒 + 𝑝 → 𝑒+ + 𝑛

◦ Assumes Gd doping 

• Neutron captured by the Gd, allows event tagging with ~ 90% efficiency (8 MeV 𝛾
cascade)

◦ Without Gd doping, neutron mostly captured by free protons, ~ 20% tagging efficiency at 
Super-Kamiokande
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Supernova Surveys
• Study prospect of time-correlated observable CCSNe and detected neutrino events

• ASAS-SN: ongoing survey, measures in g-band with a limiting magnitude of 17, full-sky 
coverage, 1 day cadence (cadence is the time to revisit a point on the sky)

• LSST: under construction, measures in r-band with a limiting magnitude of 24, coverage 
of almost half of the sky, 1 day cadence
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Completeness 𝑓𝑑𝑒𝑡𝑒𝑐𝑡
• Define an ideal detection fraction fmaglim

• Multiply by, fdust, the fraction eliminated via dust extinction
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Cosmic CCSNe Rate
• Starting with the cosmic star formation rate 
(CSFR), pictured right, we want to get the 
cosmic (core-collapse) SN rate (CSNR)

• Assume that the CSFR and CSNR are 
proportional

• Constant of proportionality obtained from the 
initial mass function, assume Salpeter A IMF

◦ Constant is the ratio of mass fraction of stars 
that will undergo core collapse and the mean 
CCSN progenitor mass

◦ Assume core-collapse range is 8-50 M☉
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Detection Rate
• Define a differential CCSNe detection rate per redshift per solid angle          

𝛤𝑆𝑁,𝑜𝑏𝑠,𝑥 𝑧 ≡
𝑑𝑁𝑆𝑁,𝑜𝑏𝑠,𝑥

𝑑Ω 𝑑𝑡𝑜𝑏𝑠 𝑑𝑧
= ℛ𝑆𝑁 𝑧 𝑓𝑑𝑒𝑡𝑒𝑐𝑡(𝑧;𝑚𝑙𝑖𝑚

𝑆𝑁 )
𝑟𝑐𝑜𝑚(𝑧)2

1+𝑧

𝑑𝑟𝑐𝑜𝑚

𝑑𝑧
(1)
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Observed CCSNe
• ASAS-SN and LSST: maximum uncertainty in 
time of core-collapse, ∆𝑡, of 1 day (cadence)  
⇒ stack 365 CCSNe

• If we stack more with the same ∆𝑡, we enter 
the DSNB regime

• Pinpointing time of core-collapse to smaller 
uncertainties will allow us to stack more CCSNe 
while remaining outside the DSNB regime

10

Closest 365 CCSNe



Calculating CCSNe Neutrino Events
• Again, we only assume detection via IBD with no flavor oscillation. 

• Event number given by 𝑁𝜈 =
𝑁𝑡

4𝜋𝐷2
׬
𝐸𝑙𝑜𝑤

𝐸ℎ𝑖𝑔ℎ 𝜎 𝐸𝜈 𝐹 𝐸𝜈 𝑑𝐸𝜈 (2)

◦ 𝑁𝑡: number of target protons, 𝐷: distance, 𝜎 𝐸𝜈 : cross section, 𝐹 𝐸𝜈 : 𝜈 energy spectrum

• The energy range we look at is from 11 MeV to 30 MeV for Gd doped Hyper-K

• Assume time-integrated flux with 𝐿ഥ𝜈𝑒 = 5 × 1052 erg, 𝐸ഥ𝜈𝑒 = 15 MeV

◦ Motivated by CCSNe simulations

• Closest 365 CCSNe give average of 0.61 events for ASAS-SN and 0.48 events for LSST
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LSST Stacking Region of Interest  
• Theoretical predictions retrieve for ∆𝑡 = 1 day, we 
do not obtain ~ 1 event

• What if we decrease ∆𝑡, thus allowing us to stack 
more CCSNe?

◦ Comes from modelling CCSN early light curves

• Vertical lines correspond to ∆𝑡 of one day and one 
hour

• Light blue area is the region in which LSST can 
detect ~ 1 event outside of the DSNB region
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Hyper-K Estimated Background Rate
• Use Super-K backgrounds from their SK-I, SK-II, and SK-III runs

◦ Crude estimate: average background rate of 0.000150 events per day per kton

◦ SK-III background larger than the other runs due to an accident 

• Need to stack background events as we stack neutrino events

• As both ∆𝑡′s are close in value, background estimate is similar

• Outcome: 20.58 background events compared to signal of ~ 1 SN neutrino event
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Conclusions
• ∆𝑡 of 1 day (survey cadence) is too slow, in the DSNB region for LSST’s theoretical 
observed CCSNe rate for ~ 1 ҧ𝜈𝑒 event

• If LSST can reach a ∆𝑡 of 1 hour, then we can detect ~ 1 ҧ𝜈𝑒 event

• However, we have a background signal of ~ 20 events

• Must collect data over long periods of time (5-10 years) and only select the closest 
CCSNe for best prospects
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Processes for Neutrino Production
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Gadolinium Doping
• Neutron tagging allows us to reject backgrounds that only produce relativistic leptons, 
like atmospheric muon neutrinos. 

• Gd has the largest thermal neutron cross-section of all stable nuclei

• Gd captures a neutron and enters an excited state, then releasing a 𝛾 ray cascade with 
a total energy of 8 MeV
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More on the CCSNe Rate, ℛ𝑆𝑁 𝑧

ℛ𝑆𝑁 𝑧 =
𝑋𝑆𝑁
𝑚𝑆𝑁

ሶ𝜌∗ 𝑧

𝑑𝑁𝑆𝑁
𝑑Ω 𝑑𝑡𝑜𝑏𝑠 𝑑𝑧

= ℛ𝑆𝑁 𝑧
𝑟𝑐𝑜𝑚
2

1 + 𝑧

𝑑𝑟𝑐𝑜𝑚
𝑑𝑧

𝑑𝑁𝑆𝑁
𝑑𝑉𝑐𝑜𝑚 𝑑𝑡 𝑑𝑀𝑝

≡ ℛ𝑆𝑁 𝑧 𝜙𝑠𝑛𝑙𝑓,𝑥 𝑀𝑝

• 𝑋𝑆𝑁 is the mass fraction of stars which will undergo core-collapse 

• 𝑚𝑆𝑁 is the average CCSN progenitor mass

• ሶ𝜌∗ 𝑧 is the cosmic star formation rate density
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More on Event Number Calculations 
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𝐹 𝐸𝜈 =
𝐿𝜈
𝐸𝜈

2

(𝛼 + 1)(𝛼+1)

𝛤(𝛼 + 1)
Exp −(𝛼 + 1)

𝐸𝜈
𝐸𝜈

𝐸𝜈
𝑘

𝐸𝜈
𝑘−1

=
𝑘 + 𝛼

1 + 𝛼
𝐸𝜈

𝜎 𝐸𝜈 = 9.5 × 10−44cm2 1 − 6
𝐸𝜈
𝑀

𝐸𝜈 − 𝛥

MeV

•𝑀 is the nucleon mass (~939 MeV)

• 𝛥 is the nucleon mass difference (~1.29 MeV)



Pinpointing Time of Core-Collapse
• Explosion time is estimated by fitting the SN light curves 

• Assume an initial blackbody emission from shock breakout (red)

• This is followed by a phase dominated by the expansion of a luminous shell (black)
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More on Super-K Backgrounds

21

Super-Kamiokande Collaboration, 2012, Physical Review D, 85


