Impact of late time neutrino emission on the DSNB

(Ekanger et al., in prep)

Nick Ekanger

Core Collapse Supernovae (CCSNe)

Virginia Tech CNP Research Day 2022

Core collapse supernovae

Neutrinos from CCSNe

• Early signal:

- High luminosity, high mean energy from accretion
- Simulations typically focus on this

• Late signal:

- After shock revival, PNS cools
- Luminosity and mean energy decrease
- SN1987A only case of SN neutrinos

[1] Li et al. (2021)

Virginia Tech CNP Research Day 2022

Neutrinos from Simulation

- Estimate neutrino emission from simulations:
 - Robust, dynamic mass accretion phase
 - Few with long term cooling components

[1] Bollig et al. (2021)

Virginia Tech CNP Research Day 2022

Core collapse supernovae

Diffuse Supernova Neutrino Background (DSNB)

- Sum distribution of CCSNe over cosmological history
 - Individual CCSNe events cannot be detected
- Detectable at SK through IBD
 - $\bar{\nu}_e + p \rightarrow e^+ + n$
 - Gadolinium upgrade (SK-Gd)

[1] https://www.businessinsider.com/super-kamiokande-neutrino-detector-is-unbelievably-beautiful-2018-6[2] https://www.mpi-hd.mpg.de/WIN2015/talks/neutrino2_ikeda.pdf

Virginia Tech CNP Research Day 2022

Vertices within 50cm

Virginia Tech CNP Research Day 2022

Diffuse Supernova Neutrino Background

First, Set the Stage

• Our Model

- 3D simulations give neutrino emission for accretion phase
- Assume standard SFR ^[2]
- Neutrino emission from BH
 - Choose conservative BH fraction: (M > 40 M_{\odot} , ~10%)
 - Signal from two 40 M_{\odot} ^[3] simulations
- Need cooling phase neutrino emission

Virginia Tech CNP Research Day 2022

Estimate Cooling Phase 5 Ways

- Need mean energy and energy liberated by neutrinos
 ≥50% of energy liberation occurs in cooling phase!
- Without many long-term multi-dimensional simulations, we estimate the cooling phase by:
- 1. Constant mean energy
- 2. Analytical solution
- 3. Correlation method
- 4. Renormalized correlation methods
 - \cdot Shen EOS
 - LS220 EOS

Constant Mean Energy

('Const')

- Mean energy:
 - Assume it retains value at end of simulation
 - Expected to reduce as PNS cools, so represents upper limit
- Liberated energy:
 - Assume ~energy liberated = gravitational binding energy
 - Determined from PNS mass/radius and SFHo EOS

Virginia Tech CNP Research Day 2022

Analytic Solution

('Analyt')

- PNS info: mass, radius, total energy liberated
- + correction factors for density (g) and scattering off heavy nuclei (β)
- g, β adjusted to best fit mean energy
- Mean energy ~ reasonable, but luminosity fit is poor
 - Despite this, integrating luminosity ~ grav binding energy

[1] Suwa et al. (2021)

Virginia Tech CNP Research Day 2022

[•] Analytic function to estimate ^[1] neutrino luminosity and mean energy

Final Mass-Revival Time Correlation

- Found linear correlation with 1D cooling phase sims ^[1]
 - 'Supernova Neutrino Database'
 - Both mean energy and log of liberated energy
- Greater final mass \rightarrow greater neutrino emission
- Earlier revival time \rightarrow greater neutrino emission

[1] Nakazato et al. (2013)

Virginia Tech CNP Research Day 2022

Renormalized Correlations

('RenormShen/LS')

- Neutrino emission from 'Corr' method systematically lower than others
- Renormalize correlations to another simulation suite ^[1]
 - Re-fit through data well
 - Depends on EOS:
 - Mean energy differences are large

[1] Hudepohl (2014)

Virginia Tech CNP Research Day 2022

Results

- 'Corr' / 'Const' are lower / upper estimates
- Liberated energies similar
 - Mean energies drive differences in event rates
- Factor of ~3 difference in event rates (R_{ν}) and flux (ϕ)

	s40 BH		s40s7b2 BH	
Strategy	R_{ν} [/yr]	$\phi ~[/{ m cm}^2/{ m s}]$	R_{ν} [/yr]	$\phi ~[/\mathrm{cm}^2/\mathrm{s}]$
Const	2.69	1.02	2.45	0.90
Analyt	2.12	0.74	1.88	0.63
Corr	1.10	0.37	0.86	0.26
RenormShen	1.86	0.60	1.62	0.49
RenormLS	2.17	0.75	1.93	0.63

Total $\bar{\nu}_e$ energies: early hydro data + late cooling estimations (~0-20s post-bounce)

Virginia Tech CNP Research Day 2022

Wrapping up

Conclusion

• Factor of ~ 3 difference in predicted DSNB rates at SK-Gd

• Under current SK flux limits ^[1]

• Comes primarily from uncertainty in cooling phase mean energy

	s40 BH		s40s7b2 BH	
Strategy	$R_{ u}$ [/yr]	$\phi ~[/{ m cm}^2/{ m s}]$	R_{ν} [/yr]	$\phi [/\mathrm{cm}^2/\mathrm{s}]$
Const	2.69	1.02	2.45	0.90
Analyt	2.12	0.74	1.88	0.63
Corr	1.10	0.37	0.86	0.26
RenormShen	1.86	0.60	1.62	0.49
RenormLS	2.17	0.75	1.93	0.63

• In absence of many long-term, multidimensional simulations

- Among 5 methods, recommend 'RenormLS'
- Recommend 'Analyt' if more simulation data is available

[1] Abe et al. (2021)

Virginia Tech CNP Research Day 2022

Thank you!