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Outline

e Neutrinoless Double beta decay
e The CUORE Experiment

e A new experiment in development: CUPID



Neutrino Mass: Some open questions
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Nuclear Mass
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Double-Beta Decay

Even Mass Number
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Atomic Number

® [irst studied by Goeppert-Mayer in 1935

® Simultaneous decay of 2 neutrons in a nucleus

® Second-order weak process, allowed in SM

® Observable only if ‘ordinary’ beta decay is inhibited

® Directly observed in ~12 nuclel
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Neutrinoless Double-Beta Decay

What if a neutrino is exchanged
between the two neutrons ?
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We get no neutrinos in the final state
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* [f mgg =50 meV estimated half
lives ~ 1025 - 1027 years !
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Double-Beta Decay Signature

Summed-energy spectrum of final state electrons
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0.0 0.2 0.4 0.6 0.8 1.0 Assumes BR 0v/2v = 1% and detector energy resolution is 2%

®* Neutrinoless double-beta decay has never been
observed ... the halt-life is at least 102° years

® Searching for this decay boils down to searching
for a new peak in the summed electron spectrum
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Building a sensitive Experiment

* \We want the expected number of signal events to be large compared to
statistical fluctuations of the background

Maximize this st‘g M -t
Figure of merit —- a -
b-AFE

\/N bkg

* Generally we want:

* Maximize isotopic abundance of decaying nuclei (a)
* Need to be able to run experiments for a long time (t)
® | arge mass of source material (M)

* Small background index near the Q-value (b)

®* Excellent energy resolution (small AE)
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Building a sensitive Experiment

* \We want the expected number of signal events to be large compared to
statistical fluctuations of the background

Maximize this st‘g M -t
Figure of merit —- a -
\/kag b-AFE
¢ GeneraHy we want: Signal peak  “Flat” Background ___F
* Maximize isotopic abundanc oE | e rwin / """"" 3.5% FWHM L0%% FWEM.
* Need to be able to run exper ) / 1 :
* Large mass of source materi. & i

e Small background index nea ’

® ' 0.96 1.00 1.04 0.96 1.00 1.04 0.96 1.00 1.04
Excellent energy resolution (: B0



Experimental Techniques (incomplete list)

e Ge Diodes

Excellent energy resolution (~0.1% FWHM
in the region of interest)

Mature purification technigues (HPGe)

Bkg rejection through pulse shape
analysis

Large masses possible

Limited to 76Ge

LEGEND
(planned)




Experimental Techniques (incomplete list)

» TPCs liquid and high pressure gas (136Xe)

=Enrichment and purification is relatively
easy

= Event topology reconstruction

= | ow background due to fiducialization and
self-shielding

=Poorer energy resolution (~2% FWHM for
Iquid Xe)

| arge detector masses possible

NEXT (planne

nEXO
(Planned)




Experimental Techniques (incomplete list)

e Cryogenic (scintillating) bolometers

= Excellent energy resolution (~0.2-0.3%
FWHM in the region of interest)

= Several target isotopes possible
(130Te, 100Mo0,48Ca, 82Se)

= Bkg rejection through heat/light
analysis

= | arge masses possible
= | ow-temperature cryogenics

CUORE CUPID(planned)
f
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e Use temperature change to measure energy apnsorbead

Cryogenic Bolometer Technique

The absorbed energy causes an increase in absorber temperature

Temperature

Time

For dielectric crystal absorbers

T3

heat capacity follows the Debye law o T3

Typically operated at ~10mK |

Excellent energy resolution

AFE
o8 ~ 0.2%

13

Thermal bath

Thermal
Thermom\eter‘ lg(/ coupling

y

/30 @
3 @ \

Absorber



CUORE:Cryogenic Underground Observatory for Rare Events

CUORE

(Total mass: 742 kQ)
e Operated at T~11.8 mK
* Primary physics goal: Ov@[3 decay of 130Te

1 .

1) * |sotopic abundance 34% => 206 kg
et * Q-value: 2527.5 keV

1 JL_ R Sample Event Waveform

ol N

'l, 2 osf

Ll_,/ L 0'6:_ Relatively slow detectors

1/ E_ pulse duration ~1 second

Time (s)
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CUORE

4 TeOq2 crystals (5 cm x 5 cm x 5 cm) per floor
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Gran Sasso Underground Lab

Photo: courtesy Gran Sasso Lab

1400 m of rock (~3600 m.w.e.) deep

e Us: ~3 x 108/ (s-cm?)

e vs: ~0.73/(s-cm?2)

e neutrons: 4 x 106 n/(s-cm2) below 10 MeV



CUORE Cryogemc System
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CUORE Cryogemc System

300K vessel (3500 kg)
Outer vacuum chamber




CUORE Cryogemc System

40K vessel (980kg)




CUORE Cryogemc System

4K vessel (1990kg) I




CUORE Cryogemc System

Still vessel (840kg)
(~800mK)




CUORE Cryogemc System

Heat-Exchanger vessel (510 kg)
(~50mK) S




CUORE Cryogemc System

10mK vessel (450 kg)

Detector support plate
(260 kg) )

(805 kg)




CUORE Cryogemc System

5X pulse tube cryocoolers
Pre-cool to 4K




CUORE Cryogenic System

Dilution refrigerator insert
getsustoverylow T




CUORE Cryogemc System

30-cm-thick modern lead (2460 kg).__
Thermalized to 50mK stage

6 cm thick ancient lead (5400 kg)
Thermalized to 4K vessel




External Shielding

 Polyethylene to slow down neutrons

e Boron to absorb slow neutrons
Y-beam

Minus K insulators

Main Support Plate
* | ead to absorb gamma rays

" ' .

cryostat

concrete beams

H;BO; panels
lead

sand-filled columns

polyethylene
concrete walls ——

borated polyethylene

screwjacks

movable platform

seismic insulators




_lower Installation on




CUORE Status: Stable data taking (t)

CUORE Exposure Accumulation

CLS B Total TeO2 Exposure
;‘ — [ Unblinded Exposure
O — Cryogenic Maintenance
E 1=
5 B
;_‘ —
— B
20.5F
= T z 2
= — e Z
0

Jul 2017 Dec 2017 Jul 2018 Dec 2018 Jul 2019 Jan 2020 Jul 2020 Dec 2020 Jul 2021

o After initial data taking phase, significant effort devoted to
understanding the system and optimizing data taking conditions

» Since March 2019 data taking is continuing smoothly (now > 3
yvears at ~10 mK!)
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CUORE Status: Stable data taking (t)

(\®

A T/T (%)
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Entries

 Temperature stable to < 0.2% over the course of more than 1 year
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CUORE Status: Stable data taking (t)

2

Apr 2019

Jul 2019

“TOct2019

Jan 2020

" Apr2020

Jul 2020

Sep 2020

T

|

1

* Temperature stable to < 0.2% over the course of more than 1 year
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CUORE: OvBf3 Decay Search

B Base cuts Full energy spectrum observed in CUORE
I Base cuts + AC

Base cuts + AC + PSD
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CUORE: Ov(3B Decay Search

Nature 604, 53—-58 (2022)

CUORE ROI Spectrum

> .
% Bestlit (global mode) » No evidence for OvBB decay (yet !)
) 90% CI limiton Iy,
é Fit without OvVBf component T1/2 > 2.2 < 1025 yr (90% Cl)
S
| | J(l * [nterpretation in context of light Majorana neutrino exchange
B T H | I‘\"HT‘L
| | + ,+, m55<90—310mev
2490 2500 2510 2520 2530 2540 2550 2560 2570
Energy (keV)
Total exposure TeOz: 1038.4 kg - yr Detector Performance Parameters
Likelihood model: flat continuum (Bl), posited Background Index
peak for OvV[3B (rate), peak for 60Co (rate + position) (1,49 (),()4) < 10™2 counts /(keV - kg - yr)

Unbinned fit on physical range (rates non-negative),
uniform prior on Moy

Characteristic FWHM AE at Qgg
7.5+ 0.5 keV

Systematic uncertainties: <0.8% impact on limit 33




CUORE: Ov(3B Decay Search

Nature 604, 53—-58 (2022)

CUORE ROI Spectrum

>
L Best fit (global mode) . :
- a No evidence for OvBR decay (yet !)
@' 90% CI limit on T,
E Fit without Ovpf component 25
S T1/2 > 2.2 X 107 yr (90% C.I)
@)
|, | J(l * [nterpretation in context of light Majorana neutrino exchange
) -
STRRE SN ﬁ—_ﬁi
llllllll o IIJFIJ(I ) mega < 90 — 310 meV
2490 2500 2510 2520 2530 2540 2550 2560 2570
Energy (keV)

Total exposure TeOz2: 1038.4 kg - yr

Likelihood model: flat continuum (Bl), posited ,
peak for OV (rate), peak for 60Co (rate + position) Data taking continues smoothly

~1800 kg.yr as of May 6 2022

Unbinned fit on physical range (rates non-negative),
uniform prior on Moy

Systematic uncertainties: <0.8% impact on limit 34



What Next ?



What Next ?

B Base cuts
e Base cuts + AC

Base cuts + AC + PSD
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* ~90% of the background comes from degraded alpha particles coming from
shallow surface contamination

* ~10% from beta/gamma decays
 CUORE just sees thermal signal, no way to distinguish alpha particles




CUPID: CUORE Upgrade with Particle ID

e |f the absorber also scintillates measuring both the thermal and light signal enables particle
discrimination

Light Detector

(\ -j_

— — —

)|

e Thermometers
- (

/%

4

<

o) Energy
- >

7 release *

Bolometer

>
Heat Signal

e |ight detection at mK temperatures is achieved with secondary bolometer (such as Ge wafer)



CUPID

* Array of 1596 Li>1%MoO4 scintillating bolometers
 Enriched to >95% in 190Mo (240kg of 190Mo)
e 100Mo Q-value: 3034 keV /vy background significantly reduced

 Exploit Particle ID using scintillation bolometer technique to remove
surface-alpha background

e Reuse CUORE cryogenic infrastructure at LNGS

projected sensitivity current limits

10°E

10° =
— C —

Expected exclusion sensitivity 5 i LLL

TV - 10%Tyr

mgg - 10 — 20 meV




CUPID

Detector Module Tower
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CUPID R&D@VT

e Background modeling and simulations
e Low-background prototyping at LNGS, material activation measurments, analysis at VT

Optimizing light-collection efficiency

Investigating pile-up rejection Optimizing Particle 1D

— n ! : Li:2MoO4 HallC Tests
o : '
k= i e 5 ~
> - 5 5 C
,e 0.8 — : =
= - E E B/~ Events
2 06— ; =
E f . -
S ol A 5

04— - ' . -
c% B . o ) / single pulse %
= - : . : g
) L : P At = 15ms S
E 0.2_ : }:/// g . ..
= # g —— At=30ms -
E 0 L7 | | ¥ o o Events
o I I I I I ! I ; I I I I I I I I I I > ¢ ) | I. | | | | | | | | | | | | | | | | | | | | | | | | |
Z 0.98 1 1.02 1.04 1.06 1.08 1.1 -0.20 1000 000 3000 4000 5000 €000

Time [S] Energy (keV)
Phys.Rev.C 104 (2021) 1, 015501 _
Eur.Phys.J.C 81 (2021) 2, 104 In preparation

e Sensor testing and light detector prototyping at VT cryogenic facility



Cryogenic Test Facility at VT

e Bluefors LD-400 cryogen-free dilution refrigerator
e Arrived at VT in March 2020 (just before lockdown began)
e Now operational in Rm 10 Robeson

e Base temperature: 8 mK
e Cooling power @ 20mK: 17uW
e Cooling power @ 100 mK: 580uW
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Cryogenic Test Facility at VT

Undergraduates J. Stevic and G.
Bimstefer installing optical fibers to
pulse cryogenic light detectors
(4316 Research project Spring 2021)

Undergraduate A. Brown installing

noise thermometer
(4316 Research project Fall 2020)




® Neutrinoless double beta decay is a probe of Majorana neutrinos
e CUORE is progressing smoothly, largest ultra-cryogenic detector in the world

® No evidence for neutrinoless double beta decay (yet)

Ty > 2.2 x 10% yr  (90% C.)

mpgg < 90 — 310 meV

e CUORE cryogenic infrastructure will be the host tfacility for a next-generation
neutrinoless double beta decay search: CUPID
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Cryogenic Lead Shielding (Ancient Lead

12

= *'Pb X-rays
10 -

Common lead

1 | Roman lead

Counts |keV™ h']

lead

Low radioactivity

0 200 400 600 800
Energy [keV]

Ancient lead Is extremely radiopure |

46



Dilution Refrigerator Principle

4 _ )
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From CUORE to CUPID

Heat/Light separation -CUPID-Mo

Alpha Rejection

greater than for a particles
> 99.9%

e Lightyield for B/y events is 5x

a separation

> 99.9 % [(/y acceptance
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