Progress towards obtaining multidimensional maps of the nucleon inner constituents

Marie Boër

Center of Neutrino Physics Research Day 2022 Virginia Tech, May 6th, 2022

Where do we start?

One day, I asked Mr. S. "What is inside your box?"

Where do we start?

Well, he said something like that:

Where do we start?

Me: but inside the cat? And inside the inside of the inside of the...?

Well, someone asked the same question thousands years ago...

Me: but what is there inside atoms? And inside inside atoms?

What is inside nucleons?

Quarks, antiquarks, gluons Dynamic effects: spin, angular momentum correlation...

What we want to probe?

Ideally, position <u>and</u> momentum of the partons with spin...

Nucleon Tomography

Multidimensional imaging, not like "classical 3D" pictures quarks = bones, antiquarks = vessels, muscles = gluons... We can obtain

We can obtain such image!

"1D": longitudinal momentum in Deep Inelastic Scattering

momentum frame (Breit)

G. Mallot/CERN

"1D": longitudinal momentum in Deep Inelastic Scattering Momentum fraction "x" and resolution/virtuality "Q'2"

"1D": longitudinal momentum in Deep Inelastic Scattering

How to interpret the momentum fraction in terms of constituents density

"2D": Transverse position

proton

Momentum transfer squared t

transverse charge distributions (from M. Vanderhaeghen)

"2D": Transverse position

Elastic scattering \Rightarrow lateral deformation of electric and magnetic structure Screening from other charges (quarks, antiquarks) \Rightarrow probe only "sees" partial charge

Form factors characterize the charge density

3D: "transverse position vs longitudinal momentum"

Reaction:

Deep Inelastic Regime to probe partons (off-diagonal matrix element)
Exclusive to access non-zero transfer momentum (off-forward matrix element)
Matrix elements combination sensitive to Spin-parity and nature of final particle (parity and flavor)
Mass of final particle is a lever arm to access certain kinematics of the functions

Base handbag diagram "off quark"

Generalized Parton Distribution

Depends on t Mandelstam, (p-p')² xi: longitudinal momentum transfer ("hard part") x: momentum of the parton q, q' virtuality for NLO, higher twist terms

Transverse position in "slices" of momentum

Each slice have different ratio of gluons and various variety (flavor) of quarks

Like slices from MRI

Projections from M. Vanderhaeghen

From 1D to "3D" to "5D"

From 1D to "3D" to "5D"

5D tomography: Wigner distribution— the "mother distribution"

> Belitsky, Ji, Yuan (2003); Lorce, Pasquini (2011)

Generalized Parton Distributions

Non calculable part of cross section and Generalized Parton Distributions: [Ji's 1997 conventions]

Hard Exclusive Reactions

Incoming photon: real or spacelike photon (Q²)

Outgoing particle:

1) Meson: here vector mesons only HEMP = Hard Exclusive Meson Production

- "light": rho, omega...
- "heavy": J/psi, Upsilon...

2) Photon:

Real: DVCS Deeply Virtual Compton Scattering Timelike Virtual Photon: TCS or DDVCS Timelike Compton or Double compton Scattering

Note: factorization line

Generic handbag diagrams

Generalized Parton Distributions

Handbag diagram example

GPD: matrix element that connect N and N' and contain quark/gluons interactions

• Contain information about quark and gluon position, spin, ...

Spin-parity, flavor decomposition, quark/gluons...

- Meson come with various flavor content, and favor a certain spin parity: Depends on spin, isospin, parity, flavor of valence quarks...

Extracting GPDs from meson for flavor decomposition and studies of certain GPDs

Focus on vector meson: factorization proof + high cross section, neglect higher twist

Hard exclusive Virtual Compton Scattering

Deeply Virtual Compton Scattering (DVCS)

Timelike Compton Scattering (TCS)

Both reactions access same Generalized Parton Distributions, same kinematics Leading order, leading twist

⇒ Many experiments measuring spacelike DVCS, Future experiments will measure Timelike Compton Scattering

Goal: GPDs universality, complementary measurements of polarization observables to constrain all GPDs... 21

Extraction of GPDs from Compton Form Factors

DVCS amplitude decomposition into Compton Form Factors (TCS similar):

Probing GPD x vs ξ dependence with experimental observables:

22

Access non-diagonal part with DDVCS

Lever arm in q/q' will access the off-diagonal region

Access non-diagonal part with DDVCS

 $\xi > |\xi'|$: ERBL region; $\xi < |\xi'|$ DGLAP region

Quark propagator normalized to ξ at asymtotic limit: $(1-Q'^2/Q^2) / (1+Q'^2/Q^2) \rightarrow up$ to t/Q^2 factor, we play with respective value of Q² and Q'² to go "out of diagonal" for GPD \rightarrow neglecting t, we are restricted to $\xi > |\xi'|$

need to map this region for GPD models and extrapolations needed for tomographic interpretations at $\xi=0$; GPD extrapolated from $\xi\rightarrow0$

Experimental program, JLab Hall C

Polarized and unpolarized measurements: TCS, vector mesons, quarkonia near threshold ²⁵

Observables & experiments

Observable (proton target)	Experimental challenge	Main interest for GPDs	JLab experiments
Unpolarized cross section	1 or 2 order of magnitude lower than DVCS, require high luminosity	Im + Re part of amplitude. Re(H), Im(H)	CLAS 12, SoLID approved NPS conditionnal
Circularly polarized beam	Easiest observable to measure at JLab	Im(H), Im(H) Sensitivity to quark angular momenta, in particular for n eutron	CLAS 12, SoLID approved NPS conditionnal
Linearly polarized beam	Need high luminosity, at least 10x more than for circular beam, and electron tagging	Re(H), D-term. Good to discriminate models and very important to bring constrains to real part of CFF	GlueX (?)
Longitudinaly polarized target	Polarized target	lm(H)	no / "for free"?
Transversely polarized target	Polarized target, and high luminosity: binning in θs, φs	Im(H̃), Im(E)	NPS conditionnal
Double spin asymmetry with circularly polarized beam	Polarized target, very high luminosity, precision measurement	Real part of all CFF	no / "for free"?
Double spin asymmetry with longitudinally polarized beam	Polarized target, electron tagging, very high luminosity and precision	Not the most interesting, Im(CFFs) but difficult to measure	no
TCS off the neutron			

- similar, need higher luminosity and proton or neutron tagging

- target spin asymmetries are expected to be larger, and beam spin asymmetries are smaller

* Recent Hall B measurement

- Not covering the same kinematic region, and low statistics = hard to use in our fits
- * Need of precision measurement for unpolarized cross section
- * **Need of proton + neutron** for flavor separation and extraction of Hu, Hd, for universality studies and comparison vs DVCS

2 options, both important

- 1) Extension of proposed experiment with 10 days unpolarized off NH3
- Needed for interpretation of polarized data and studies of dilution factor
- Can't be interpreted for precision measurement off proton
- 2) Dedicated precision LH2+LD2 measurement for GPD H
- need for high statistics and precision
- estimation 10 days each target ?

+ complementary polarized measurements

Physics goals

Sin(ϕ) moment of transverse spin asymmetry vs ϕ_s , Dependence in GPD E and J^{u,d} (VGG model)

TSA as a function of ϕ and ϕ_s

- Sensitive to Im(interference), BH cancels
- Strong dependence in angular momenta,

Sensitivity to GPD E (also to H, Ht)

Proposed setup at JLab Hall C

Experimental setup

Trigger: GEMs, hodoscopes, calorimeters (all 3 particles)

Integrated luminosity: 5.85 x 10⁵ pb⁻¹ for 30 PAC days of "physics"

Compton Form Factors from DVCS and TCS

Anticipated results on CFFs

Mostly dominated by complementary unpolarized experiments, due to correlation with GPD H

(illustration) **combined errors** on 2 orthogonal \perp asymmetries for first sinus moment, for all bins (to be compared with size of asymmetries vs φ_{s}) CFF uncertainties not our final uncertainties (moments) 1.8 relative uncertainties 2 Im(H) 0.80.5 reference bin 0.4in text 0.2

CFFs uncertainties vs experimental errors fits on simulations using VGG parametrization

CFF from TCS with 4 observables and transverse target

- Im(H), Re(H), Im(H), Im(E) extracted even with very large experimental uncertainties (E, F, G)
- Results mostly depend on unpolarized cross section errors (other experiments off LH2)
- Our experiment will put constraints on GPD E, J, & J, and reduce errors on Im+Re(H)

Extension: flavor decomposion & precision measurement, proton and neutron

Number of reconstructed events measured for the TCS reaction depending on –t weighted by the cross section

The data are normalized.

Difference between proton and neutron:

Measured : x6

Camille's projection demonstrate

feasibility of measuring unpolarized proton TCS off LH2 (in terms of counting rates & impact)
feasibility of measuring unpolarized neutron TCS off LD2

Extension: J/psi (see Erik Talk)

- Energy dependent production mechanisms
- Expected 3 gluon exchange dominance at JLab

* Using model Brodsky & al. for JLab projections Generator tuned for JLab & EIC energies with « manual » tuning for dominant cross section, « user choice » parametrizations (pdf...) (credit : Tyler Schroeder, summer student REU)

Erik's work this year: updating this code and tuning for JLab projections, simulations

Our goals

- similar setup as for TCS
- use of new target magnet : extended acceptance at large angles
- realistic projection to see if an experiment can be done

DDVCS

Our goal / current work

- coming soon with realistic MC for 2 possible setup we are exploring
- prototype muon detector to be placed behind spectrometer

Why using NPS ?

- larger acceptance for electrons
- can't do with HMS/SHMS
- statistic and precision in principle ok (from toy MC) if starting from DVCS or TCS setups

2 options we are exploring

1) similar as DVCS experiment with extra muon detectors (+ shielding, dif trigger...), proton also detected

2) with 2 calo as TCS + muon detectors

Extension of Hall C DVCS or TCS setup with muon detectors Plan to develop them at VT For high intensity DDVCS measurement into muons

Binning in ξ , ξ' , at large -t (3) $0.35 < -t < 0.55 \text{ GeV}^2$

Binning in ξ , ξ' , at medium -t (2) 0.15 < -t < 0.35 GeV²

Binning in ξ , ξ' , at low -t (1) tmin < -t < 0.15 GeV²

Few projections from generated MC : phase space « out of diagonal »

Access non-diagonal part with DDVCS

 $\xi > |\xi'|$: ERBL region; $\xi < |\xi'|$ DGLAP region

Quark propagator normalized to ξ at asymtotic limit: $(1-Q'^2/Q^2) / (1+Q'^2/Q^2) \rightarrow up$ to t/Q^2 factor, we play with respective value of Q² and Q'² to go "out of diagonal" for GPD \rightarrow neglecting t, we are restricted to $\xi > |\xi'|$

need to map this region for GPD models and extrapolations needed for tomographic interpretations at $\xi=0$; GPD extrapolated from $\xi \rightarrow 0$

Summary: Why looking at several Compton reactions And hard exclusive production of mesons together for GPDs ?

Goal : global GPD fits from mesons + Compton-like channels all together

Measurements of vector mesons ($J^{p}=1^{-}$ like photon) for complementarity with Compton & flavor decomposition

- factorization proven (caveat : near threshold not clear)

- high energy enhancement / pomeron exchange

Light vector mesons

- flavor decomposition
- « some » out of diagonal access x vs xi
- complementarity with Compton and already made measurements
- feasible in short term

Heavy mesons, quarkonia

- flavor decomposition + gluons
- not sure of interpretation : non perturbative region near threshold
- possibility to go off diagonal if light meson measuruments prove that we have a way to incorporate meson measurements within Compton-like fits

- photon & electron beam, possibility to demonstrate lepton pair equivalence (or not) + if feasible to reconstruct ee pairs

SUMMARY

- We want to "map" the nucleon inner content (quarks, gluons)
- from 1D to 3D to 5D: functions describing the structure
- Generalized Parton Distributions and tomography

Our JLab current & future plans:

- Timelike Compton Scattering to extract all GPDs & universality Measurements planned in Hall C, new projections in progress... (see Brannon's talk)
- Quarkonia (see Erik's talk near threshold, not shown at higher energy)
- Light vector meson program: flavor decompositon, spin/parity...
- Double Deeply Virtual Compton Scattering: ERBL "meson exchange" region, tomographic interpretations