

Electron fon Collider in China, EicC

Zhihong Ye Department of Physics, Tsinghua University

On behalf of EicC Collaboration

Towards improved hadron femtography with hard exclusive reactions Virginia Tech 2022/07/18-22

High Intensity heavy-ion Accelerator Facility (HIAF):

- First phase ~ 0.6 km^2 ; Construction area ~ 0.12 km^2
- $+2 \text{ km}^2$ is reserved for future development
- Total budget:~ 6.8 billion CNY (~1billion US Dollars)
 - $\checkmark~3.5$ billion comes from the central government.
 - ✓ 1.0 billion from The China National Nuclear Corporation (CNNC) for CiADS
 - ✓ 2.35 billion from local government for infrastructure

High Intensity heavy-ion Accelerator Facility (HIAF):

Construction Plan:

D Road Map:

2019	2020	2021	2	2022	2023	2024	20	025
Civil construction								
		Electric power, cooling water, compressed air, network, cryogenic, supporting system, etc.						
ECR design & fabrication SE and			instal miss	stallation				Dav
	Linac design & fabrication			iL	iLinac installation and commissioning			One
Prototypes of PS, RF cavity, chamber, magnets, etc.			fab	rication	BRing in comm		exp.	
					HFRS & SI	Ring installation	on &	
					commissioning			
					Terminals installation			

≻Accelerator Site Construction:

≻IMP Office Site Construction:

New IMP branch in Huizhou downtown (73km from HIAF)

>Upgraded Accelerator complex layout:

7/24

Complementary to JLab@12GeV and US-EIC:

Complementary to JLab@12GeV and US-EIC:

- Spin of the nucleon: 1D, 3D
 - Polarized electron + Polarized proton/light nuclei
 - Valance and see quarks TMDs and GPDs
- Partonic structure of nuclei and the parton interaction with the nuclear environment
 - Unpolarized electron + unpolarized various nuclei
 - Well developed heavy-ion community
- Mass of the nucleon
 - J/Psi and Upsilon Production
- Exotic states with c/cbar, b/bbar
 - Strong BESIII community in China

≻Spin of the nucleon-helicity distribution

arXiv:2103.10276 JHEP08(2021)034

≻Spin structure of the nucleon-TMDs

Green: Current accuracy Red: stat. error only Blue: sys. Error included

H. Dong, D. X. Zheng, J. Zhou, 2018

EicC SIDIS MC Data:

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV X 20 GeV
- eHe-3: 3.5 GeV X 40 GeV
- Pol.: e(80%), p(70%), He-3(70%)
- ➤ Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹

≻Spin structure of the nucleon-GPDs

>Nuclear medium effect

eA Physics:

- EMC / Anti-shadowing
- ➢ Nuclear-PDF
- ➢ Hadronization
- ➢ Nuclear-TMD, Nuclear-FF, Nuclear-GPD

≻Proton Mass Study

Mass decomposition [Ji, 95]

- $M = \underbrace{M_q + M_m}_{\text{Quark}} + \underbrace{M_g + M_a}_{\text{Gluon}}$ $M_q : \text{quark energy}$ $M_m : \text{quark mass (condensate)}$ $M_g : \text{gluon energy}$ $M_a : \text{trace anomaly}$
- M_q and M_g constrained by PDFs.
- M_m via πN low energy scattering.
- M_a via threshold production of J/Ψ (8.2 GeV; JLab) and Υ (12 GeV);

Exotic hadronic states

- Search for hidden-charm pentaquarks P_c
 - So far observed only by LHCb
 - No signal in GlueX
- Search for hidden-charm tetraquarks Z_c
- Search for doubly-charmed tetraquark T_{cc} family

EicC 50	/ fb Z. Yang, FI	K. Guo, CPO	245(2021)1
Exotic states	Production/decay processes	Detection efficiency	Expected events
	$ep \rightarrow eP_c(4312)$		
$P_{c}(4312)$	$P_c(4312) \rightarrow pJ/\psi$	$\sim \! 30\%$	15 - 1450
	$J/\psi \rightarrow l^+ l^-$		
	$ep \to eP_c(4440)$		
$P_c(4440)$	$P_c(4440) \rightarrow pJ/\psi$	$\sim 30\%$	20 - 2200
	$J/\psi \to l^+ l^-$		
	$ep \rightarrow eP_c(4457)$		
$P_c(4457)$	$P_c(4457) \rightarrow pJ/\psi$	$\sim 30\%$	10 - 650
	$J/\psi \to l^+l^-$		
	$ep \rightarrow eP_b(\text{narrow})$		
$P_b(\text{narrow})$	$P_b(\text{narrow}) \to p\Upsilon$	$\sim 30\%$	0 - 20
	$\Upsilon \to l^+ l^-$		
$D(\cdot, 1)$	$ep \rightarrow eP_b(\text{wide})$	2007	0 200
$P_b(wide)$	$P_b(\text{wide}) \rightarrow p \Upsilon$	$\sim 30\%$	0 - 200
	$1 \rightarrow l + l$		
(2872)	$ep \to e\chi_{c1}(3872)p$	- 50%	0 00
$\chi_{c1}(3872)$	$\chi_{c1}(3872) \to \pi^+\pi^- J/\psi$	$\sim 307_0$	0-90
	$J/\psi \to l \cdot l$		
$Z_{-}(3900)^{+}$	$ep \rightarrow e \mathbb{Z}_c(3900) + n$ $Z^+(3000) \rightarrow \pi^+ L/c/c$	$\sim 60\%$	90-9300
22(0300)	$\Sigma_c (3900) \to \pi^+ J/\psi$ $I/_{2/2} = (1+1)^{-1}$	~0070	<i>3</i> 0 <i>— 3</i> 300
	$J/\psi \rightarrow \iota \cdot \iota$		

Software

>EiccRoot in the FairRoot framework:

Top level: ROOT, Virtual MC, etc.

Middle level: FairRoot framework manages the general infrastructure with simulation and tasks

EiccRoot: implementation of the EicC detector sim. and rec. inside FairRoot framework

IP Detector Layout

➤Very Preliminary Design:

Ongoing full Geant4 simulation

Detector Designs and R&D

➤Tracking

ITS3 + ITS2 + gaseous hybrid detector

Nupix-A1: First Protype MAPS in China

Micromegas

GEM (self-stretching)

Detector Designs and R&D

Detector Designs and R&D

≻Calorimeters

Strong mass production capability

Shashlyk ECal

Front End Board for SiPM-based Ecal

Projected Timeline

Collaboration

>An International Effort:

EicC Current Collaborators:

- \succ 102 scientists
- \rightarrow 47 institutes
- ➢ 8 countries

EIC User Group:

- 1330 members
- 266 institutions
- 36 countries (7 world regions)

Need strong supports from international collaborators!

EicC White Paper (arXiv: 2102.09222)

鬱 Frontiers Journals	希 Home 🛛 Jo	urnals Subscription	Open access	Editorial policy	About us		Sign in
Frontiers of							Δ
Physic Atomic, molecular, optical physic	cs, condensed ma	atter, materials physics, p	article, nuclear ph	Title / Author	/ Abstract / Keywords / DOI / Affiliation	٩	Adv search
							No -
About the journal	Brows	e Co	ollections	Video colle	ctions Authors & rev	viewers	

Front. Phys. >> 2021, Vol. 16 >> Issue (6) : 64701. DOI: 10.1007/s11467-021-1062-0

REPORT

Electron-ion collider in China

Daniele P. Anderle¹, Valerio Bertone², Xu Cao^{3,4}, Lei Chang⁵, Ningbo Chang⁶, Gu Chen⁷, Xurong Chen^{3,4}, Zhuojun Chen⁸, Zhufang Cui⁹, Lingyun Dai⁸, Weitian Deng¹⁰, Minghui Ding¹¹, Xu Feng¹², Chang Gong¹², Longcheng Gui¹³, Feng-Kun Guo^{4,14}, Chengdong Han^{3,4}, Jun He¹⁵, Tie-Jiun Hou¹⁶, Hongxia Huang¹⁵, Yin Huang¹⁷, Krešlmir KumeričKi¹⁸, L. P. Kaptari^{3,19}, Demin Li²⁰, Hengne Li¹, Minxiang Li^{3,21}, Xueqian Li⁵, Yutie Liang^{3,4}, Zuotang Liang²², Chen Liu²², Chuan Liu¹², Guoming Liu¹, Jie Liu^{3,4}, Liuming Liu^{3,4}, Xiang Liu²¹, Tianbo Liu²², Xiaofeng Luo²³, Zhun Lyu²⁴, Boqiang Ma¹², Fu Ma^{3,4}, Jianping Ma^{4,14}, Yugang Ma^{4,25,26}, Lijun Mao^{3,4}, Cédric Mezrag², Hervé Moutarde², Jialun Ping¹⁵, Sixue Qin²⁷, Hang Ren^{3,4}, Craig D. Roberts⁹, Juan Rojo^{28,29}, Guodong Shen^{3,4}, Chao Shi³⁰, Qintao Song²⁰, Hao Sun³¹, Paweł Sznajder³², Enke Wang¹, Fan Wang⁹, Qian Wang¹, Rong Wang^{3,4}, Ruiru Wang^{3,4}, Taofeng Wang³³, Wei Wang³⁴, Xiaoyu Wang²⁰, Xiaoyun Wang³⁵, Jiajun Wu⁴, Xinggang Wu²⁷, Lei Xia³⁶, Bowen Xiao^{23,37}, Guoqing Xiao^{3,4}, Ju-Jun Xie^{3,4}, Yaping Xie^{3,4}, Hongxi Xing¹, Hushan Xu^{3,4}, Nu Xu^{3,4,23}, Shusheng Xu³⁸, Mengshi Yan¹², Wenbiao Yan³⁶, Wencheng Yan²⁰, Xinhu Yan³⁹, Jiancheng Yang^{3,4}, Yi-Bo Yang^{4,14}, Zhi Yang⁴⁰, Deliang Yao⁸, Zhihong Ye⁴¹, Peilin Yin³⁸, C.-P. Yuan⁴², Wenlong Zhan^{3,4}, Jianhui Zhang⁴³, Jinlong Zhang²², Pengming Zhang⁴⁴, Yifei Zhang³⁶, Chao-Hsi Chang^{4,14}, Zhenyu Zhang⁴⁵, Hongwei Zhao^{3,4}, Kuang-Ta Chao¹², Qiang Zhao^{4,46}, Yuxiang Zhao^{3,4}, Zhengguo Zhao^{3,4}, Jian Zhou²², Xiaog Zhou⁴⁵, Xiaorong Zhou^{3,6}, Bingsong Zou^{4,14}, Liping Zou^{3,4}

Summary

- > HIAF is under construction \rightarrow Day#1 experiment in 2025
- ▷ From HIAF to EicC → Complementary to JLab@12GeV and US-EIC
 - Add new electron Injector and collider rings
 - ➤ White-Paper released in 2021
 - ≻ CDR in 2023 → Aim for 15th "5-year-plan" (construction in 2026~2030)
 - Active physics simulations, accelerators & detectors R&D
- ➤ Existing Experience & Expertise:
 - ✓ Accelerator: good in ion beams; limited in electron beams & polarizations
 - ✓ Theory: strong in hadron spectroscopies & nuclear medium; accumulating in hadron-structure
 - ✓ Experiment: good in tracking/calorimeters; enhancing other detector technologies
 - ✓ Participating in and learning form US-EIC project

EicC will be an international facility \rightarrow Welcome to join and build together!

Back Up

To follow our regular meetings/workshops

• For subscription to the **eicc_member** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_member?previous_action=info

• For subscription to the **eicc_physics** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_physics?previous_action=info

• For subscription to the **eicc_detector** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_detector?previous_action=info

• For subscription to the **eicc_accelerator** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_accelerator?previous_action=info

J/Psi production at EicC

For W=10-20 GeV,

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50\sigma(\gamma p \to J/\psi p)$
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c

Upsilon production at EicC

For W=15-20 GeV,

• Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered),

 $\sigma(\gamma p \rightarrow b \overline{b} X)$ is about two orders higher

- Electroproduction: roughly two orders of magnitude (α) smaller, ~ O(0.1 pb)
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is ~ $O(10^4)$;

Exotic states production at EicC

• Cross section estimates for exclusive reactions assuming VMD (highly model-dependent)

Estimated events for EicC (50 /fb)

Exotic states	${ m Production/decay}\ { m processes}$	Detection efficiency	Expected events
$P_c(4312)$	$ep \rightarrow eP_c(4312)$ $P_c(4312) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim \! 30\%$	15 - 1450
$P_{c}(4440)$	$ep \rightarrow eP_c(4440)$ $P_c(4440) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	${\sim}30\%$	20-2200
$P_{c}(4457)$	$ep \rightarrow eP_c(4457)$ $P_c(4457) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	10-650
$P_b(\text{narrow})$	$\begin{split} ep &\to eP_b(\text{narrow}) \\ P_b(\text{narrow}) &\to p\Upsilon \\ &\Upsilon &\to l^+l^- \end{split}$	$\sim\!\!30\%$	0-20
$P_b(\text{wide})$	$ep \rightarrow eP_b(\text{wide})$ $P_b(\text{wide}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+ l^-$	$\sim\!\!30\%$	0-200
$\chi_{c1}(3872)$	$ep \rightarrow e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 50\%$	0-90
$Z_c(3900)^+$	$ep \rightarrow eZ_c(3900)^+ n$ $Z_c^+(3900) \rightarrow \pi^+ J/\psi$ $J/\psi \rightarrow l^+ l^-$	~60%	90-9300

Highlighted physics topics

>Quark/gluon spin contributions to the

Lattice QCD simulations

Also, LQCD is able to do quasi-PDF calculations